ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin Wave Scattering in Ferromagnetic Cross

224   0   0.0 ( 0 )
 نشر من قبل Alexander Kozhanov
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spin wave scattering in the right angle ferromagnetic cross was measured. Shape anisotropy defined magnetization ground states at zero biasing magnetic fields. Scattering of the spin waves in the center of ferromagnetic cross is strongly dependent on the amplitude and angle of the biasing magnetic field. Micromagnetic simulations indicate that low in-plane biasing magnetic fields rotate the magnetization of the cross center while the arms stay axially magnetized due to the shape anisotropy. We discuss effect of biasing magnetic fields on the spin wave scattering and approaches to an effective spin wave switch based on the fabricated structure.



قيم البحث

اقرأ أيضاً

Recently fabricated InSe monolayers exhibit remarkable characteristics that indicate the potential of this material to host a number of many-body phenomena. Here, we consistently describe collective electronic effects in hole-doped InSe monolayers us ing advanced many-body techniques. To this end, we derive a realistic electronic-structure model from first principles that takes into account the most important characteristics of this material, including a flat band with prominent van Hove singularities in the electronic spectrum, strong electron-phonon coupling, and weakly-screened long-ranged Coulomb interactions. We calculate the temperature-dependent phase diagram as a function of band filling and observe that this system is in a regime with coexisting charge density wave and ferromagnetic instabilities that are driven by strong electronic Coulomb correlations. This regime can be achieved at realistic doping levels and high enough temperatures, and can be verified experimentally. We find that the electron-phonon interaction does not play a crucial role in these effects, effectively suppressing the local Coulomb interaction without changing the qualitative physical picture.
The increasing demand for ultrahigh data storage densities requires development of 3D magnetic nanostructures. In this regard, focused electron beam induced deposition (FEBID) is a technique of choice for direct-writing of various complex nano-archit ectures. However, intrinsic properties of nanomagnets are often poorly known and can hardly be assessed by local optical probe techniques. Here, we demonstrate spatially resolved spin-wave spectroscopy of individual circular magnetic elements with radii down to 100 nm. The key component of the setup is a microwave antenna whose microsized central part is placed over a movable substrate with well-separated CoFe-FEBID nanodisks. The circular symmetry of the disks gives rise to standing spin-wave resonances and allows for the deduction of the saturation magnetization and the exchange stiffness of the material using an analytical theory. The presented approach is especially valuable for the characterization of direct-write elements opening new horizons for 3D nanomagnetism and magnonics.
The graphene-enhanced Raman scattering of Rhodamine 6G molecules on pristine, fluorinated and 4-nitrophenyl functionalized graphene substrates was studied. The uniformity of the Raman signal enhancement was studied by making large Raman maps. The rel ative enhancement of the Raman signal is demonstrated to be dependent on the functional groups, which was rationalized by the different doping levels of pristine, fluorinated and 4-nitrophenyl functionalized graphene substrates. The impact of the Fermi energy of graphene and the phonon energy of the molecules was considered together for the first time in order to explain the enhancement. Such approach enables to understand the enhancement without assuming anything about the uniformity of the molecules on the graphene surface. The agreement between the theory and our measured data was further demonstrated by varying excitation energy.
Micron scale ferromagnetic tubes placed on the ends of ferromagnetic CoTaZr spin waveguides are explored in order to enhance the excitation of Backward Volume Magnetostatic Spin Waves. The tubes produce a closed magnetic circuit about the signal line of the coplanar waveguide and are, at the same time, magnetically contiguous with the spin waveguide. This results in a 10 fold increase in spin wave amplitude. However, the tube geometry distorts the magnetic field near the spin waveguide and relatively high biasing magnetic fields are required to establish well defined spin waves. Only the lowest (uniform) spin wave mode is excited.
174 - Jin Lan , Jiang Xiao 2020
Spin wave and magnetic texture are two elementary excitations in magnetic systems, and their interaction leads to rich magnetic phenomena. By describing the spin wave and the magnetic texture using their own collective coordinates, we find that they interact as classical particles traveling in mutual electromagnetic fields. Based on this unified collective coordinate model, we find that both skew scattering and side jump may occur as spin wave passing through magnetic textures. The skew scattering is associated with the magnetic topology of the texture, while the side jump is correlated to the total magnetization of the texture. We illustrate the concepts of skew scattering and side jump by investigating the spin wave trajectories across the topological magnetic Skyrmion and the topologically trivial magnetic bubble respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا