ﻻ يوجد ملخص باللغة العربية
Coherent broadband excitation of plasmons brings ultrafast photonics to the nanoscale. However, to fully leverage this potential for ultrafast nanophotonic applications, the capacity to engineer and control the ultrafast response of a plasmonic system at will is crucial. Here, we develop a framework for systematic control and measurement of ultrafast dynamics of near-field hotspots. We show deterministic design of the coherent response of plasmonic antennas at femtosecond timescales. Exploiting the emerging properties of coupled antenna configurations, we use the calibrated antennas to engineer two sought-after applications of ultrafast plasmonics: a subwavelength resolution phase shaper, and an ultrafast hotspot switch. Moreover, we demonstrate that mixing localized resonances of lossy plasmonic particles is the mechanism behind nanoscale coherent control. This simple, reproducible and scalable approach promises to transform ultrafast plasmonics into a straightforward tool for use in fields as diverse as room temperature quantum optics, nanoscale solid state physics and quantum biology.
Modern nonlinear optical materials allow light of one wavelength be efficiently converted into light at another wavelength. However, designing nonlinear optical materials to operate with ultrashort pulses is difficult, because it is necessary to matc
Recent advancements in computational inverse design have begun to reshape the landscape of structures and techniques available to nanophotonics. Here, we outline a cross section of key developments at the intersection of these two fields: moving from
Deterministic fractal antennas are employed to realize multimodal plasmonic devices. Such structures show strongly enhanced localized electromagnetic fields typically in the infrared range with a hierarchical spatial distribution. Realization of engi
Femtosecond-scale polarization state conversion is experimentally found in optical response of a plasmonic nanograting by means of time-resolved polarimetry. Simultaneous measurements of the Stokes parameters as a function of time with an averaging t
Recent progress in nanotechnology has enabled us to fabricate subwavelength architectures that function as antennas for improving the exchange of optical energy with nanoscale matter. We describe the main features of optical antennas for enhancing qu