ترغب بنشر مسار تعليمي؟ اضغط هنا

Kinematic Properties and Dark Matter Fraction of Virgo Dwarf Early-Type Galaxies

310   0   0.0 ( 0 )
 نشر من قبل Elisa Toloba
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف E. Toloba




اسأل ChatGPT حول البحث

What happens to dwarf galaxies as they enter the cluster potential well is one of the main unknowns in studies of galaxy evolution. Several evidence suggests that late-type galaxies enter the cluster and are transformed to dwarf early-type galaxies (dEs). We study the Virgo cluster to understand which mechanisms are involved in this transformation. We find that the dEs in the outer parts of Virgo have rotation curves with shapes and amplitudes similar to late-type galaxies of the same luminosity. These dEs are rotationally supported, have disky isophotes, and younger ages than those dEs in the center of Virgo, which are pressure supported, often have boxy isophotes and are older. Ram pressure stripping, thus, explains the properties of the dEs located in the outskirts of Virgo. However, the dEs in the central cluster regions, which have lost their angular momentum, must have suffered a more violent transformation. A combination of ram pressure stripping and harassment is not enough to remove the rotation and the spiral/disky structures of these galaxies. We find that on the the Faber-Jackson and the Fundamental Plane relations dEs deviate from the trends of massive elliptical galaxies towards the position of dark matter dominated systems such as the dwarf spheroidal satellites of the Milky Way and M31. Both, rotationally and pressure supported dEs, however, populate the same region in these diagrams. This indicates that dEs have a non-negligible dark matter fraction within their half light radius.



قيم البحث

اقرأ أيضاً

201 - E. Toloba 2012
We place our sample of 18 Virgo dwarf early-type galaxies (dEs) on the V-K - velocity dispersion, Faber-Jackson, and Fundamental Plane (FP) scaling relations for massive early-type galaxies (Es). We use a generalized velocity dispersion, which includ es rotation, to be able to compare the location of both rotationally and pressure supported dEs with those of early and late-type galaxies. We find that dEs seem to bend the Faber-Jackson relation of Es to lower velocity dispersions, being the link between Es and dwarf spheroidal galaxies (dSphs). Regarding the FP relation, we find that dEs are significantly offset with respect to massive hot stellar systems, and re-casting the FP into the so-called kappa-space suggests that this offset is related to dEs having a total mass-to-light ratio higher than Es but still significantly lower than dSph galaxies. Given a stellar mass-to-light ratio based on the measured line indices of dEs, the FP offset allows us to infer that the dark matter fraction within the half light radii of dEs is on average >~ 42% (uncertainties of 17% in the K band and 20% in the V band), fully consistent with an independent estimate in an earlier paper in this series. We also find that dEs in the size-luminosity relation in the near-infrared, like in the optical, are offset from early-type galaxies, but seem to be consistent with late-type galaxies. We thus conclude that the scaling relations show that dEs are different from Es, and that they further strengthen our previous findings that dEs are closer to and likely formed from late-type galaxies.
We present the first set of cosmological baryonic zoom-in simulations of galaxies including dissipative self-interacting dark matter (dSIDM). These simulations utilize the Feedback In Realistic Environments (FIRE-2) galaxy formation physics, but allo w the dark matter to have dissipative self-interactions analogous to Standard Model forces, parameterized by the self-interaction cross-section per unit mass, $(sigma/m)$, and the dimensionless degree of dissipation, $0<f_{rm diss}<1$. We survey this parameter space, including constant and velocity-dependent cross-sections, and focus on structural and kinematic properties of dwarf galaxies with $M_{rm halo} simeq 10^{10-11} {rm M}_{odot}$. Central density profiles of simulated dwarfs become cuspy when $(sigma/m)_{rm eff} gtrsim 0.1,{rm cm^{2},g^{-1}}$ (and $f_{rm diss}=0.5$ as fiducial). The power-law slopes asymptote to $alpha approx -1.5$ in low-mass dwarfs independent of cross-section, which arises from a dark matter cooling flow. Through comparisons with dark matter only simulations, we find the profile in this regime is insensitive to the inclusion of baryons. However, when $(sigma/m)_{rm eff} ll 0.1,{rm cm^{2},g^{-1}}$, baryonic effects can produce cored density profiles comparable to non-dissipative cold dark matter (CDM) runs but at smaller radii. Simulated galaxies with $(sigma/m) gtrsim 10,{rm cm^{2},g^{-1}}$ develop significant coherent rotation of dark matter, accompanied by halo deformation, but this is unlike the well-defined thin dark disks often attributed to baryon-like dSIDM. The density profiles in this high cross-section model exhibit lower normalizations given the onset of halo deformation. For our surveyed dSIDM parameters, halo masses and galaxy stellar masses do not show appreciable difference from CDM, but dark matter kinematics and halo concentrations/shapes can differ.
215 - E. Toloba 2009
We present new observational results on the kinematical, morphological, and stellar population properties of a sample of 21 dEs located both in the Virgo cluster and in the field, which show that 52% of the dEs i) are rotationally supported, ii) exhi bit structural signs of typical rotating systems such as discs, bars or spiral arms, iii) are younger (~3 Gyr) than non-rotating dEs, and iv) are preferentially located either in the outskirts of Virgo or in the field. This evidence is consistent with the idea that rotationally supported dwarfs are late type spirals or irregulars that recently entered the cluster and lost their gas through a ram pressure stripping event, quenching their star formation and becoming dEs through passive evolution. We also find that all, but one, galaxies without photometric hints for hosting discs are pressure supported and are all situated in the inner regions of the cluster. This suggests a different evolution from the rotationally supported systems. Three different scenarios for these non-rotating galaxies are discussed (in situ formation, harassment and ram pressure stripping).
266 - E. Toloba 2010
We present new medium resolution kinematic data for a sample of 21 dwarf early-type galaxies (dEs) mainly in the Virgo cluster, obtained with the WHT and INT telescopes at the Roque de los Muchachos Observatory (La Palma, Spain). These data are used to study the origin of the dwarf elliptical galaxy population inhabiting clusters. We confirm that dEs are not dark matter dominated galaxies, at least up to the half-light radius. We also find that the observed galaxies in the outer parts of the cluster are mostly rotationally supported systems with disky morphological shapes. Rotationally supported dEs have rotation curves similar to those of star forming galaxies of similar luminosity and follow the Tully-Fisher relation. This is expected if dE galaxies are the descendant of low luminosity star forming systems which recently entered the cluster environment and lost their gas due to a ram pressure stripping event, quenching their star formation activity and transforming into quiescent systems, but conserving their angular momentum.
We use Chandra observations to estimate the accretion rate of hot gas onto the central supermassive black hole in four giant (of stellar mass 10E11 - 10E12 solar masses) early-type galaxies located in the Virgo cluster. They are characterized by an e xtremely low radio luminosity, in the range L < 3E25 - 10E27 erg/s/Hz. We find that, accordingly, accretion in these objects occurs at an extremely low rate, 0.2 - 3.7 10E-3 solar masses per year, and that they smoothly extend the relation accretion - jet power found for more powerful radio-galaxies. This confirms the dominant role of hot gas and of the galactic coronae in powering radio-loud active galactic nuclei across ~ 4 orders of magnitude in luminosity. A suggestive trend between jet power and location within the cluster also emerges.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا