ﻻ يوجد ملخص باللغة العربية
The understanding of the gravitational properties of the quantum vacuum might be the next scientific revolution.It was recently proposed that the quantum vacuum contains the virtual gravitational dipoles; we argue that this hypothesis might be tested within the Solar System. The key point is that quantum vacuum (enriched with the gravitational dipoles) induces a retrograde precession of the perihelion. It is obvious that this phenomenon might eventually be revealed by more accurate studies of orbits of planets and orbits of the artificial Earth satellites. However, we suggest that potentialy the best laboratory for the study of the gravitational properties of the quantum vacuum is the Dwarf Planet Eris and its satellite Dysnomia; the distance of nearly 100AU makes it the unique system in which the precession of the perihelion of Dysnomia (around Eris) is strongly dominated by the quantum vacuum.
We argue that the hypothesis of the gravitational repulsion between matter and antimatter can be tested at the Ice Cube, a neutrino telescope, recently constructed at the South Pole. If there is such a gravitational repulsion, the gravitational field
The cosmological constant problem is the principal obstacle in the attempt to interpret dark energy as the quantum vacuum energy. We suggest that the obstacle can be removed, i.e. that the cosmological constant problem can be resolved by assuming tha
A physical process of the gravitational redshift was described in an earlier paper (Wilhelm & Dwivedi 2014) that did not require any information for the emitting atom neither on the local gravitational potential U nor on the speed of light c. Althoug
The complex planetary synchronization structure of the solar system, which since Pythagoras of Samos (ca. 570-495 BC) is known as the music of the spheres, is briefly reviewed from the Renaissance up to contemporary research. Copernicus heliocentric
The synthesis of quantum and gravitational physics is sought through a finite, realistic, locally causal theory where gravity plays a vital role not only during decoherent measurement but also during non-decoherent unitary evolution. Invariant set th