ترغب بنشر مسار تعليمي؟ اضغط هنا

Orbital Phase Dependent Gamma-ray emissions from the Black Widow Pulsar

253   0   0.0 ( 0 )
 نشر من قبل Man Ho Wu
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف E. M. H. Wu




اسأل ChatGPT حول البحث

We report on evidence for orbital phase-dependence of the gamma-ray emission from PSR B1957+20 black widow system by using the data of the Fermi Large Area Telescope. We divide an orbital cycle into two regions: a region containing the inferior conjunction, and the other region containing rest of the orbital cycle. We show that the observed spectra for the different orbital regions are fitted by different functional forms. The spectrum of the orbital region containing inferior conjunction can be described by a power-law with an exponential cutoff (PLE) model, which gives the best-fit model for the orbital phase that does not contain the inferior conjunction, plus an extra component above ~2.7 GeV. The emission above 3 GeV in this region is detected with a ~7-sigma confidence level. The gamma-ray data above ~2.7 GeV are observed to be modulated at the orbital period at the ~2.3-sigma level. We anticipate that the PLE component dominating below ~2.7 GeV originates from the pulsar magnetosphere. We also show that the inverse-Compton scattering of the thermal radiation of the companion star off a cold ultra-relativistic pulsar wind can explain the extra component above ~2.7 GeV. The black widow pulsar PSR B1957+20 may be the member of a new class of object, in the sense that the system is showing gamma-ray emission with both magnetospheric and pulsar wind origins.



قيم البحث

اقرأ أيضاً

We report the discovery of 1.97 ms period gamma-ray pulsations from the 75 minute orbital-period binary pulsar now named PSR J1653-0158. The associated Fermi Large Area Telescope gamma-ray source 4FGL J1653.6-0158 has long been expected to harbor a b inary millisecond pulsar. Despite the pulsar-like gamma-ray spectrum and candidate optical/X-ray associations -- whose periodic brightness modulations suggested an orbit -- no radio pulsations had been found in many searches. The pulsar was discovered by directly searching the gamma-ray data using the GPU-accelerated Einstein@Home distributed volunteer computing system. The multi-dimensional parameter space was bounded by positional and orbital constraints obtained from the optical counterpart. More sensitive analyses of archival and new radio data using knowledge of the pulsar timing solution yield very stringent upper limits on radio emission. Any radio emission is thus either exceptionally weak, or eclipsed for a large fraction of the time. The pulsar has one of the three lowest inferred surface magnetic-field strengths of any known pulsar with $B_{rm surf} approx 4 times 10^{7},$G. The resulting mass function, combined with models of the companion stars optical light curve and spectra, suggests a pulsar mass $gtrsim 2,M_{odot}$. The companion is light-weight with mass $sim 0.01,M_{odot}$, and the orbital period is the shortest known for any rotation-powered binary pulsar. This discovery demonstrates the Fermi Large Area Telescopes potential to discover extreme pulsars that would otherwise remain undetected.
We report the discovery of the first radio pulsar associated with NGC 6712, an eclipsing black widow (BW) pulsar, J1853$-$0842A, found by high-sensitivity searches using the Five-hundred-meter Aperture Spherical radio Telescope. This 2.15 ms pulsar i s in a 3.56 hr compact circular orbit with a very low mass companion likely of mass 0.018 to 0.036 $M_{rm odot}$ and exhibits eclipsing of the pulsar signal. Though the distance to PSR J1853$-$0842A predicted from its dispersion measure ($155.125 pm 0.004$ cm$^{-3}$ pc) and Galactic free electron density models are about 30% smaller than that of NGC 6712 obtained from interstellar reddening measurements, this is likely due to limited knowledge about the spiral arms and Scutum stellar cloud in this direction. Follow-up timing observations spanning 445 days allow us to localize the pulsars position to be 0.14 core radii from the center of NGC 6712 and measure a negative spin-down rate for this pulsar of $-2.39(2)times10^{-21}rm s s^{-1}$. The latter cannot be explained without the acceleration of the GC and decisively supports the association between PSR J1853--0842A and NGC 6712. Considering the maximum GC acceleration, Galactic acceleration, and Shklovskii effect, we place an upper limit on the intrinsic spin-down rate to be $1.11times10^{-20}rm~s~s^{-1}$. From an analysis of the eclipsing observations, we estimate the electron density of the eclipse region to be about $1.88times10^6rm cm^{-3}$. We also place an upper limit of the accretion rate from the companion is about $3.05times10^{-13}~M_{rm odot}rm~yr^{-1}$ which is comparable with some other BWs.
Timing results for the black-widow pulsar J2051-0827 are presented, using a 21-year dataset from four European Pulsar Timing Array telescopes and the Parkes radio telescope. This dataset, which is the longest published to date for a black-widow syste m, allows for an improved analysis that addresses previously unknown biases. While secular variations, as identified in previous analyses, are recovered, short-term variations are detected for the first time. Concurrently, a significant decrease of approx. 2.5x10-3 cm-3 pc in the dispersion measure associated with PSR J2051-0827 is measured for the first time and improvements are also made to estimates of the proper motion. Finally, PSR J2051-0827 is shown to have entered a relatively stable state suggesting the possibility of its eventual inclusion in pulsar timing arrays.
We describe the first X-ray observations of five short orbital period ($P_B < 1$ day), $gamma$-ray emitting, binary millisecond pulsars. Four of these, PSRs J0023+0923, J1124$-$3653, J1810+1744, and J2256$-$1024 are `black-widow pulsars, with degener ate companions of mass $ll0.1 M_{odot}$, three of which exhibit radio eclipses. The fifth source, PSR J2215+5135, is an eclipsing `redback with a near Roche-lobe filling $sim$0.2 solar mass non-degenerate companion. Data were taken using the textit{Chandra X-Ray Observatory} and covered a full binary orbit for each pulsar. Two pulsars, PSRs J2215+5135 and J2256$-$1024, show significant orbital variability while PSR J1124$-$3653 shows marginal orbital variability. The lightcurves for these three pulsars have X-ray flux minima coinciding with the phases of the radio eclipses. This phenomenon is consistent with an intrabinary shock emission interpretation for the X-rays. The other two pulsars, PSRs J0023+0923 and J1810+1744, are fainter and do not demonstrate variability at a level we can detect in these data. All five spectra are fit with three separate models: a power-law model, a blackbody model, and a combined model with both power-law and blackbody components. The preferred spectral fits yield power-law indices that range from 1.3 to 3.2 and blackbody temperatures in the hundreds of eV. The spectrum for PSR J2215+5135 shows a significant hard X-ray component, with a large number of counts above 2 keV, which is additional evidence for the presence of intrabinary shock emission and is similar to what has been detected in the low-mass X-ray binary to millisecond pulsar transition object PSR J1023+0038.
258 - J. Takata 2014
We study mechanisms of multi-wavelength emissions (X-ray, GeV and TeV gamma-rays) from the gamma-ray binary LS~5039. This paper is composed of two parts. In the first part, we report on results of observational analysis using four year data of fermi Large Area Telescope. Due to the improvement of instrumental response function and increase of the statistics, the observational uncertainties of the spectrum in $sim$100-300 MeV bands and $>10$GeV bands are significantly improved. The present data analysis suggests that the 0.1-100GeV emissions from LS~5039 contain three different components; (i) the first component contributes to $<$1GeV emissions around superior conjunction, (ii) the second component dominates in 1-10GeV energy bands and (iii) the third component is compatible to lower energy tail of the TeV emissions. In the second part, we develop an emission model to explain the properties of the phase-resolved emissions in multi-wavelength observations. Assuming that LS~5039 includes a pulsar, we argue that both emissions from magnetospheric outer gap and inverse-Compton scattering process of cold-relativistic pulsar wind contribute to the observed GeV emissions. We assume that the pulsar is wrapped by two kinds of termination shock; Shock-I due to the interaction between the pulsar wind and the stellar wind and Shock-II due to the effect of the orbital motion. We propose that the X-rays are produced by the synchrotron radiation at Shock-I region and the TeV gamma-rays are produced by the inverse-Compton scattering process at Shock-II region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا