ترغب بنشر مسار تعليمي؟ اضغط هنا

Physical Conditions in Molecular Clouds in the Arm and Interarm Regions of M51

225   0   0.0 ( 0 )
 نشر من قبل Jin Koda
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. Koda




اسأل ChatGPT حول البحث

We report systematic variations in the CO(2-1)/CO(1-0) line ratio (R) in M51. The ratio shows clear evidence for the evolution of molecular gas from the upstream interarm regions, passage into the spiral arms and back into the downstream interarm regions. In the interarm regions, R is typically low <0.7 (and often 0.4-0.6); this is similar to the ratios observed in Galactic giant molecular clouds (GMCs) with low far-IR luminosities. However, the ratio rises to >0.7 (often 0.8-1.0) in the spiral arms, particularly at their leading (downstream) edge. R is also high, 0.8-1.0, in the central region. An LVG calculation provides insight into the changes in the gas physical conditions between the arm and interarm regions: cold and low density gas (~10K, ~300cm-3) is required for the interarm GMCs, but this gas must become warmer and/or denser in the more active star forming spiral arms. R is higher in areas of high 24micron brightness (an approximate tracer of star formation rate surface density) and high CO(1-0) integrated intensity (a well-calibrated tracer of total molecular gas surface density). The systematic enhancement of the CO(2-1) line relative to CO(1-0) in luminous star forming regions suggests that some caution is needed when using CO(2-1) as a tracer of bulk molecular gas mass.



قيم البحث

اقرأ أيضاً

131 - D. Espada , S. Komugi , E. Muller 2012
The properties of tidally induced arms provide a means to study molecular cloud formation and the subsequent star formation under environmental conditions which in principle are different from quasi stationary spiral arms. We report the properties of a newly discovered molecular gas arm of likely tidal origin at the south of NGC 4039 and the overlap region in the Antennae galaxies, with a resolution of 168 x 085, using the Atacama Large Millimeter/submillimeter Array science verification CO(2-1) data. The arm extends 3.4 kpc (34) and is characterized by widths of ~ 200 pc (2) and velocity widths of typically DeltaV ~ 10-20 km/s . About 10 clumps are strung out along this structure, most of them unresolved, with average surface densities of Sigma_gas ~ 10-100 Msun pc^{-2}, and masses of (1-8) x 10^6 Msun. These structures resemble the morphology of beads on a string, with an almost equidistant separation between the beads of about 350 pc, which may represent a characteristic separation scale for giant molecular associations. We find that the star formation efficiency at a resolution of 6 (600 pc) is in general a factor of 10 higher than in disk galaxies and other tidal arms and bridges. This arm is linked, based on the distribution and kinematics, to the base of the western spiral arm of NGC 4039, but its morphology is different to that predicted by high-resolution simulations of the Antennae galaxies.
Molecular line images of 13CO, C18O, CN, CS, CH3OH, and HNCO are obtained toward the spiral arm of M51 at a 7 times 6 resolution with the Combined Array for Research in Millimeter-wave Astronomy (CARMA). Distributions of the molecules averaged over a 300 pc scale are found to be almost similar to one another and to essentially trace the spiral arm. However, the principal component analysis shows a slight difference of distributions among molecular species particularly for CH3OH and HNCO. These two species do not correlate well with star-formation rate, implying that they are not enhanced by local star-formation activities but by galactic-scale phenomena such as spiral shocks. Furthermore, the distribution of HNCO and CH3OH are found to be slightly different, whose origin deserves further investigation. The present results provide us with an important clue to understanding the 300 pc scale chemical composition in the spiral arm and its relation to galactic-scale dynamics.
In this work we conclude the analysis of our CO line survey of Luminous Infrared Galaxies (LIRGs: L_{IR}>=10^{11}L_{sol}) in the local Universe (Paper,I), by focusing on the influence of their average ISM properties on the total molecular gas mass es timates via the so-called X_{co}=M(H_2)/L_{co,1-0} factor. One-phase radiative transfer models of the global CO Spectral Line Energy Distributions (SLEDs) yield an X_{co} distribution with: <X_{co}>sim(0.6+/-0.2) M_{sol}(K km s^{-1} pc^2)^{-1} over a significant range of average gas densities, temperatures and dynamical states. The latter emerges as the most important parameter in determining X_{co}, with unbound states yielding low values and self-gravitating states the highest ones. Nevertheless in many (U)LIRGs where available higher-J CO lines (J=3--2, 4--3, and/or J=6--5) or HCN line data from the literature allow a separate assessment of the gas mass at high densities (>=10^{4} cm^{-3}) rather than a simple one-phase analysis we find that {it near-Galactic X_{co} (3-6), M_sol,(K,km^{-1},pc^2)^{-1} values become possible.} We further show that in the highly turbulent molecular gas in ULIRGs a high-density component will be common and can be massive enough for its high X_{co} to dominate the average value for the entire galaxy. ......... ...this may have thus resulted to systematic underestimates of molecular gas mass in ULIRGs.
Spiral arms are the most singular features in disc galaxies. These structures can exhibit different patterns, namely grand design and flocculent arms, with easily distinguishable characteristics. However, their origin and the mechanisms shaping them are unclear. The overall role of spirals in the chemical evolution of disc galaxies is another unsolved question. In particular, it has not been fully explored if the hii,regions of spiral arms present different properties from those located in the interarm regions. Here we analyse the radial oxygen abundance gradient of the arm and interarm star forming regions of 63 face-on spiral galaxies using CALIFA Integral Field Spectroscopy data. We focus the analysis on three characteristic parameters of the profile: slope, zero-point, and scatter. The sample is morphologically separated into flocculent versus grand design spirals and barred versus unbarred galaxies. We find subtle but statistically significant differences between the arm and interarm distributions for flocculent galaxies, suggesting that the mechanisms generating the spiral structure in these galaxies may be different to those producing grand design systems, for which no significant differences are found. We also find small differences in barred galaxies, not observed in unbarred systems, hinting that bars may affect the chemical distribution of these galaxies but not strongly enough as to be reflected in the overall abundance distribution. In light of these results, we propose bars and flocculent structure as two distinct mechanisms inducing differences in the abundance distribution between arm and interarm star forming regions.
We present simulations of a 500 pc$^2$ region, containing gas of mass 4 $times$ 10$^6$ M$_odot$, extracted from an entire spiral galaxy simulation, scaled up in resolution, including photoionising feedback from stars of mass > 18 M$_odot$. Our region is evolved for 10 Myr and shows clustered star formation along the arm generating $approx$ 5000 cluster sink particles $approx$ 5% of which contain at least one of the $approx$ 4000 stars of mass > 18 M$_odot$. Photoionisation has a noticeable effect on the gas in the region, producing ionised cavities and leading to dense features at the edge of the HII regions. Compared to the no-feedback case, photoionisation produces a larger total mass of clouds and clumps, with around twice as many such objects, which are individually smaller and more broken up. After this we see a rapid decrease in the total mass in clouds and the number of clouds. Unlike studies of isolated clouds, our simulations follow the long range effects of ionisation, with some already-dense gas becoming compressed from multiple sides by neighbouring HII regions. This causes star formation that is both accelerated and partially displaced throughout the spiral arm with up to 30% of our cluster sink particle mass forming at distances > 5 pc from sites of sink formation in the absence of feedback. At later times, the star formation rate decreases to below that of the no-feedback case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا