ﻻ يوجد ملخص باللغة العربية
The absorption of heavily doped graphene in the terahertz (THz) and mid-infrared (MIR) spectral regions is considered taking into account both the elastic scattering due to finite-range disorder and the variations of concentration due to long-range disorder. Interplay between intra- and interband transitions is analyzed for the high-frequency regime of response, near the Pauli blocking threshold. The gate voltage and temperature dependencies of the absorption efficiency are calculated. It is demonstrated that for typical parameters, the smearing of the interband absorption edge is determined by a unscreened part of long-range disorder while the intraband absorption is determined by finite-range scattering. The latter yields the spectral dependencies which deviate from those following from the Drude formula. The obtained dependencies are in good agreement with recent experimental results. The comparison of the results of our calculations with the experimental data provides a possibility to extract the disorder characteristics.
We investigate high-order harmonic generation (HHG) in graphene with a quantum master equation approach. The simulations reproduce the observed enhancement in HHG in graphene under elliptically polarized light [N. Yoshikawa et al, Science 356, 736 (2
Topological insulators are bulk semiconductors that manifest in-gap massless Dirac surface states due to the topological bulk-boundary correspondence principle [1-3]. These surface states have been a subject of tremendous ongoing interest, due both t
We report the infrared transmission measurement on electrically gated twisted bilayer graphene. The optical absorption spectrum clearly manifests the dramatic changes such as the splitting of inter-linear-band absorption step, the shift of inter-van
Spin injection in metallic normal/ferromagnetic junctions is investigated taking into account the anisotropic magnetoresistance (AMR) occurring in the ferromagnetic layer. It is shown, on the basis of a generalized two channel model, that there is an
In many realistic topological materials, more than one kind of fermions contribute to the electronic bands crossing the Fermi level, leading to various novel phenomena. Here, using momentum-resolved inelastic electron scattering, we investigate the p