ترغب بنشر مسار تعليمي؟ اضغط هنا

Anisotropic properties of spin avalanches in crystals of nanomagnets

230   0   0.0 ( 0 )
 نشر من قبل Claude Dion
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Anisotropy effects for spin avalanches in crystals of nanomagnets are studied theoretically with the external magnetic field applied at an arbitrary angle to the easy axis. Starting with the Hamiltonian for a single nanomagnet in the crystal, the two essential quantities characterizing spin avalanches are calculated: the activation energy and the Zeeman energy. The calculation is performed numerically for the wide range of angles and analytical formulas are derived within the limit of small angles. The anisotropic properties of a single nanomagnet lead to anisotropic behavior of the magnetic deflagration speed. Modifications of the magnetic deflagration speed are investigated for different angles between the external magnetic field and the easy axis of the crystals. Anisotropic properties of magnetic detonation are also studied, which concern, first of all, temperature behind the leading shock and the characteristic time of spin switching in the detonation.



قيم البحث

اقرأ أيضاً

We obtain a fundamental instability of the magnetization-switching fronts in super-paramagnetic and ferromagnetic materials such as crystals of nanomagnets, ferromagnetic nanowires, and systems of quantum dots with large spin. We develop the instabil ity theory for both linear and nonlinear stages. By using numerical simulations we investigate the instability properties focusing on spin avalanches in crystals of nanomagnets. The instability distorts spontaneously the fronts and leads to a complex multidimensional front dynamics. We show that the instability has a universal physical nature, with a deep relationship to a wide variety of physical systems, such as the Darrieus-Landau instability of deflagration fronts in combustion, inertial confinement fusion and thermonuclear su- pernovae, and the instability of doping fronts in organic semiconductors.
131 - M. P. Sarachik , S. McHugh 2010
The magnetization of the prototypical molecular magnet Mn12-acetate exhibits a series of sharp steps at low temperatures due to quantum tunneling at specific resonant values of magnetic field applied along the easy c-axis. An abrupt reversal of the m agnetic moment of such a crystal can also occur as an avalanche, where the spin reversal proceeds along a deflagration front that travels through the sample at subsonic speed. In this article we review experimental results that have been obtained for the ignition temperature and the speed of propagation of magnetic avalanches in molecular nanomagnets. Fits of the data with the theory of magnetic deflagration yield overall qualitative agreement. However, numerical discrepancies indicate that our understanding of these avalanches is incomplete.
Stacked spin-vortex pairs in magnetic multilayered nanopillars, with vertical separation between the vortices small compared to the vortex core size, exhibit spin dynamics absent in individual vortices. This dynamics is nonlinear and is due to the st rong direct core-core coupling in the system, dominating energetically for small- signal excitation. We observe and explain the appearance of spin resonance modes, forbidden within linear dynamics, and discuss how they depend on the magnetic and morphological asymmetries in the samples.
Experimental evidence of the anisotropy of the magnetic deflagration associated with the low-temperature first order antiferromagnetic (AFM) --> ferromagnetic (FM) phase-transition in single crystals of Gd5Ge4 is reported. The deflagrations have been induced by controlled pulses of surface acoustic waves (SAW) allowing us to explore both the magnetic field and temperature dependencies on the characteristic times of the phenomenon. The study was done using samples with different geometries and configurations between the SAW pulses and the direction of the applied magnetic field with respect to the three main crystallographic directions of the samples. The effect of temperature is nearly negligible, whereas observed strong magnetic field dependence correlates with the magnetic anisotropy of the sample. Finally, the role of the SAW pulses in both the ignition and formation of the deflagration front was also studied, and we show that the thermal diffusivity of Gd5Ge4 must be anisotropic, following kappaa>kappab>kappac.
Magnetic insulators, such as yttrium iron garnet (Y$_3$Fe$_5$O$_{12}$), are ideal materials for ultra-low power spintronics applications due to their low energy dissipation and efficient spin current generation and transmission. Recently, it has been realized that spin dynamics can be driven very effectively in micrometer-sized Y$_3$Fe$_5$O$_{12}$/Pt heterostructures by spin-Hall effects. We demonstrate here the excitation and detection of spin dynamics in Y$_3$Fe$_5$O$_{12}$/Pt nanowires by spin-torque ferromagnetic resonance. The nanowires defined via electron-beam lithography are fabricated by conventional room temperature sputtering deposition on Gd$_3$Ga$_5$O$_{12 }$ substrates and lift-off. We observe field-like and anti-damping-like torques acting on the magnetization precession, which are due to simultaneous excitation by Oersted fields and spin-Hall torques. The Y$_3$Fe$_5$O$_{12}$/Pt nanowires are thoroughly examined over a wide frequency and power range. We observe a large change in the resonance field at high microwave powers, which is attributed to a decreasing effective magnetization due to microwave absorption. These heating effects are much more pronounced in the investigated nanostructures than in comparable micron-sized samples. By comparing different nanowire widths, the importance of geometrical confinements for magnetization dynamics becomes evident: quantized spin-wave modes across the width of the wires are observed in the spectra. Our results are the first stepping stones toward the realization of integrated magnonic logic devices based on insulators, where nanomagnets play an essential role.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا