ﻻ يوجد ملخص باللغة العربية
Liquid oxygen, which is paramagnetic, also undergoes Leidenfrost effect at room temperature. In this article, we first study the deformation of oxygen drops in a magnetic field and show that it can be described via an effective capillary length, which includes the magnetic force. In a second part, we describe how these ultra-mobile drops passing above a magnet significantly slow down and can even be trapped. The critical velocity below which a drop is captured is determined from the deformation induced by the field.
A liquid droplet hovering on a hot surface is commonly referred to as a Leidenfrost droplet. In this study, we discover that a Leidenfrost droplet involuntarily performs a series of distinct oscillations as it shrinks during the span of its life. The
The gasification of multicomponent fuel drops is relevant in various energy-related technologies. An interesting phenomenon associated with this process is the self-induced explosion of the drop, producing a multitude of smaller secondary droplets, w
Volatile drops deposited on a hot solid can levitate on a cushion of their own vapor, without contacting the surface. We propose to understand the onset of this so-called Leidenfrost effect through an analogy to non-equilibrium systems exhibiting a d
The levitation of a volatile droplet on a highly superheated surface is known as the Leidenfrost effect. Wetting state during transition from full wetting of a surface by a droplet at room temperature to Leidenfrost bouncing, i.e., zero-wetting at hi
We report an experimental study of liquid drops moving against gravity, when placed on a vertically vibrating inclined plate, which is partially wetted by the drop. The frequency of vibrations ranges from 30 to 200 Hz, and, above a threshold in vibra