ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficiently Engineered Room Temperature Single Photons in Silicon Carbide

114   0   0.0 ( 0 )
 نشر من قبل Brett Johnson Dr
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the first observation of stable single photon sources in silicon carbide (SiC). These sources are extremely bright and operate at room temperature demonstrating that SiC is a viable material in which to realize various quantum information, computation and photonic applications. The maximum single photon count rate detected is 700k counts/s with an inferred quantum efficiency around 70%. The single photon sources are due to intrinsic deep level defects constituted of carbon antisite-vacancy pairs. These are shown to be formed controllably by electron irradiation. The variability of the temporal kinetics of these single defects is investigated in detail.



قيم البحث

اقرأ أيضاً

Spins in solids are cornerstone elements of quantum spintronics. Leading contenders such as defects in diamond, or individual phosphorous dopants in silicon have shown spectacular progress but either miss established nanotechnology or an efficient sp in-photon interface. Silicon carbide (SiC) combines the strength of both systems: It has a large bandgap with deep defects and benefits from mature fabrication techniques. Here we report the characterization of photoluminescence and optical spin polarization from single silicon vacancies in SiC, and demonstrate that single spins can be addressed at room temperature. We show coherent control of a single defect spin and find long spin coherence time under ambient conditions. Our study provides evidence that SiC is a promising system for atomic-scale spintronics and quantum technology.
159 - F. Fuchs 2012
Generation of single photons has been demonstrated in several systems. However, none of them satisfies all the conditions, e.g. room temperature functionality, telecom wavelength operation, high efficiency, as required for practical applications. Her e, we report the fabrication of light emitting diodes (LEDs) based on intrinsic defects in silicon carbide (SiC). To fabricate our devices we used a standard semiconductor manufacturing technology in combination with high-energy electron irradiation. The room temperature electroluminescence (EL) of our LEDs reveals two strong emission bands in visible and near infrared (NIR), associated with two different intrinsic defects. As these defects can potentially be generated at a low or even single defect level, our approach can be used to realize electrically driven single photon source for quantum telecommunication and information processing.
Electrically driven single-photon emitting devices have immediate applications in quantum cryptography, quantum computation and single-photon metrology. Mature device fabrication protocols and the recent observations of single defect systems with qua ntum functionalities make silicon carbide (SiC) an ideal material to build such devices. Here, we demonstrate the fabrication of bright single photon emitting diodes. The electrically driven emitters display fully polarized output, superior photon statistics (with a count rate of $>$300 kHz), and stability in both continuous and pulsed modes, all at room temperature. The atomic origin of the single photon source is proposed. These results provide a foundation for the large scale integration of single photon sources into a broad range of applications, such as quantum cryptography or linear optics quantum computing.
We report on acoustically driven spin resonances in atomic-scale centers in silicon carbide at room temperature. Specifically, we use a surface acoustic wave cavity to selectively address spin transitions with magnetic quantum number differences of $ pm$1 and $pm$2 in the absence of external microwave electromagnetic fields. These spin-acoustic resonances reveal a non-trivial dependence on the static magnetic field orientation, which is attributed to the intrinsic symmetry of the acoustic fields combined with the peculiar properties of a half-integer spin system. We develop a microscopic model of the spin-acoustic interaction, which describes our experimental data without fitting parameters. Furthermore, we predict that traveling surface waves lead to a chiral spin-acoustic resonance, which changes upon magnetic field inversion. These results establish silicon carbide as a highly-promising hybrid platform for on-chip spin-optomechanical quantum control enabling engineered interactions at room temperature.
Spin defects in silicon carbide (SiC) with mature wafer-scale fabrication and micro/nano-processing technologies have recently drawn considerable attention. Although room temperature single-spin manipulation of colour centres in SiC has been demonstr ated, the typically detected contrast is less than 2%, and the photon count rate is also low. Here, we present the coherent manipulation of single divacancy spins in 4H-SiC with a high readout contrast (-30%) and a high photon count rate (150 kilo counts per second) under ambient conditions, which are competitive with the nitrogen-vacancy (NV) centres in diamond. Coupling between a single defect spin and a nearby nuclear spin is also observed. We further provide a theoretical explanation for the high readout contrast by analysing the defect levels and decay paths. Since the high readout contrast is of utmost importance in many applications of quantum technologies, this work might open a new territory for SiC-based quantum devices with many advanced properties of the host material.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا