ترغب بنشر مسار تعليمي؟ اضغط هنا

The SLcam: A full-field energy dispersive X-ray camera

548   0   0.0 ( 0 )
 نشر من قبل Oliver Scharf Dr.
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The color X-ray camera (SLcam) is a full-field single photon imager. As stand-alone camera, it is applicable for energy and space-resolved X-ray detection measurements. The exchangeable poly-capillary optics in front of a beryllium entrance window conducts X-ray photons from the probe to distinguished energy dispersive pixels on a pnCCD. The dedicated software enables the acquisition and the online processing of the spectral data for all 69696 pixels, leading to a real-time visualization of the element distribution in a sample. No scanning system is employed. A first elemental composition image of the sample is visible within minutes while statistics is improving in the course of time. Straight poly-capillary optics allows for 1:1 imaging with a space resolution of 50 um and no limited depth of sharpness, ideal to map uneven objects. Using conically shaped optics, a magnification of 6 times was achieved with a space resolution of 10 um. We present a measurement with a laboratory source showing the camera capability to perform fast full-field X-ray Fluorescence (FF-XRF) imaging with an easy, portable and modular setup.



قيم البحث

اقرأ أيضاً

We present ECLAIRs, the Gamma-ray burst (GRB) trigger camera to fly on-board the Chinese-French mission SVOM. ECLAIRs is a wide-field ($sim 2$,sr) coded mask camera with a mask transparency of 40% and a 1024 $mathrm{cm}^2$ detection plane coupled to a data processing unit, so-called UGTS, which is in charge of locating GRBs in near real time thanks to image and rate triggers. We present the instrument science requirements and how the design of ECLAIRs has been optimized to increase its sensitivity to high-redshift GRBs and low-luminosity GRBs in the local Universe, by having a low-energy threshold of 4 keV. The total spectral coverage ranges from 4 to 150 keV. ECLAIRs is expected to detect $sim 200$ GRBs of all types during the nominal 3 year mission lifetime. To reach a 4 keV low-energy threshold, the ECLAIRs detection plane is paved with 6400 $4times 4~mathrm{mm}^2$ and 1 mm-thick Schottky CdTe detectors. The detectors are grouped by 32, in 8x4 matrices read by a low-noise ASIC, forming elementary modules called XRDPIX. In this paper, we also present our current efforts to investigate the performance of these modules with their front-end electronics when illuminated by charged particles and/or photons using radioactive sources. All measurements are made in different instrument configurations in vacuum and with a nominal in-flight detector temperature of $-20^circ$C. This work will enable us to choose the in-flight configuration that will make the best compromise between the science performance and the in-flight operability of ECLAIRs. We will show some highlights of this work.
The continuing improvement in quantum efficiency (above 90% for single visible photons), reduction in noise (below 1 electron per pixel), and shrink in pixel pitch (less than 1 micron) motivate billion-pixel X-ray cameras (BiPC-X) based on commercial CMOS imaging sensors. We describe BiPC-X designs and prototype construction based on flexible tiling of commercial CMOS imaging sensors with millions of pixels. Device models are given for direct detection of low energy X-rays ($<$ 10 keV) and indirect detection of higher energies using scintillators. Modified Birkss law is proposed for light-yield nonproportionality in scintillators as a function of X-ray energy. Single X-ray sensitivity and spatial resolution have been validated experimentally using laboratory X-ray source and the Argonne Advanced Photon Source. Possible applications include wide field-of-view (FOV) or large X-ray aperture measurements in high-temperature plasmas, the state-of-the-art synchrotron, X-ray Free Electron Laser (XFEL), and pulsed power facilities.
An electron-tracking Compton camera (ETCC) is a detector that can determine the arrival direction and energy of incident sub-MeV/MeV gamma-ray events on an event-by-event basis. It is a hybrid detector consisting of a gaseous time projection chamber (TPC), that is the Compton-scattering target and the tracker of recoil electrons, and a position-sensitive scintillation camera that absorbs of the scattered gamma rays, to measure gamma rays in the environment from contaminated soil. To measure of environmental gamma rays from soil contaminated with radioactive cesium (Cs), we developed a portable battery-powered ETCC system with a compact readout circuit and data-acquisition system for the SMILE-II experiment. We checked the gamma-ray imaging ability and ETCC performance in the laboratory by using several gamma-ray point sources. The performance test indicates that the field of view (FoV) of the detector is about 1$;$sr and that the detection efficiency and angular resolution for 662$;$keV gamma rays from the center of the FoV is $(9.31 pm 0.95) times 10^{^-5}$ and $5.9^{circ} pm 0.6^{circ}$, respectively. Furthermore, the ETCC can detect 0.15$;murm{Sv/h}$ from a $^{137}$Cs gamma-ray source with a significance of 5$sigma$ in 13 min in the laboratory. In this paper, we report the specifications of the ETCC and the results of the performance tests. Furthermore, we discuss its potential use for environmental gamma-ray measurements.
386 - U. Patel , R. Divan , L. Gades 2019
We present a strip transition-edge sensor microcalorimeter linear array detector developed for energy dispersive X-ray diffraction imaging and Compton scattering applications. The prototype detector is an array of 20 transition-edge-sensors with abso rbers in strip geometry arranged in a linear array. We discuss the fabrication steps needed to develop this array including Mo/Cu bilayer, Au electroplating, and proof-of-principle fabrication of long strips of SiNx membranes. We demonstrate minimal unwanted effect of strip geometry on X-ray pulse response, and show linear relationship of 1/pulse height and pulse decay times with absorber length. For the absorber lengths studied, preliminary measurements show energy resolutions of 40 eV to 180 eV near 17 keV. Furthermore, we show that the heat flow to the cold bath is nearly independent of the absorber area and depends on the SiNx membrane geometry.
Wavelength-dispersive spectrometers (WDS) are often used in synchrotron and FEL applications where high energy resolution (in the order of eV) is important. Increasing WDS energy resolution requires increasing spatial resolution of the detectors in t he dispersion direction. The common approaches with strip detectors or small pixel detectors are not ideal. We present a novel approach, with a sensor using rectangular pixels with a high aspect ratio (between strips and pixels, further called strixels), and strixel redistribution to match the square pixel arrays of typical ASICs while avoiding the considerable effort of redesigning ASICs. This results in a sensor area of 17.4 mm x 77 mm, with a fine pitch of 25 $mu$m in the horizontal direction resulting in 3072 columns and 176 rows. The sensors use ePix100 readout ASICs, leveraging their low noise (43 e$^-$, or 180 eV rms). We present results obtained with a Hammerhead ePix100 camera, showing that the small pitch (25 $mu$m) in the dispersion direction maximizes performance for both high and low photon occupancies, resulting in optimal WDS energy resolution. The low noise level at high photon occupancy allows precise photon counting, while at low occupancy, both the energy and the subpixel position can be reconstructed for every photon, allowing an ultrahigh resolution (in the order of 1 $mu$m) in the dispersion direction and rejection of scattered beam and harmonics. Using strixel sensors with redistribution and flip-chip bonding to standard ePix readout ASICs results in ultrahigh position resolution ($sim$1 $mu$m) and low noise in WDS applications, leveraging the advantages of hybrid pixel detectors (high production yield, good availability, relatively inexpensive) while minimizing development complexity through sharing the ASIC, hardware, software and DAQ development with existi
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا