ترغب بنشر مسار تعليمي؟ اضغط هنا

The prevalence of dust on the exoplanet HD 189733b from Hubble and Spitzer observations

150   0   0.0 ( 0 )
 نشر من قبل Neale Gibson
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The hot Jupiter HD189733b is the most extensively observed exoplanet. Its atmosphere has been detected and characterised in transmission and eclipse spectroscopy, and its phase curve measured at several wavelengths. This paper brings together results of our campaign to obtain the complete transmission spectrum of the atmosphere of this planet from UV to IR with HST, using STIS, ACS and WFC3. We provide a new tabulation of the transmission spectrum across the entire visible and IR range. The radius ratio in each wavelength band was rederived to ensure a consistent treatment of the bulk transit parameters and stellar limb-darkening. Special care was taken to correct for, and derive realistic estimates of the uncertainties due to, both occulted and unocculted star spots. The combined spectrum is very different from the predictions of cloud-free models: it is dominated by Rayleigh scattering over the whole visible and near infrared range, the only detected features being narrow Na and K lines. We interpret this as the signature of a haze of condensate grains extending over at least 5 scale heights. We show that a dust-dominated atmosphere could also explain several puzzling features of the emission spectrum and phase curves, including the large amplitude of the phase curve at 3.6um, the small hot-spot longitude shift and the hot mid-infrared emission spectrum. We discuss possible compositions and derive some first-order estimates for the properties of the putative condensate haze/clouds. We finish by speculating that the dichotomy between the two observationally defined classes of hot Jupiter atmospheres, of which HD189733b and HD209458b are the prototypes, might not be whether they possess a temperature inversion, but whether they are clear or dusty. We also consider the possibility of a continuum of cloud properties between hot Jupiters, young Jupiters and L-type brown dwarfs.



قيم البحث

اقرأ أيضاً

215 - C. J. Grillmair 2007
We report on the measurement of the 7.5-14.7 micron spectrum for the transiting extrasolar giant planet HD 189733b using the Infrared Spectrograph on the Spitzer Space Telescope. Though the observations comprise only 12 hours of telescope time, the c ontinuum is well measured and has a flux ranging from 0.6 mJy to 1.8 mJy over the wavelength range, or 0.49 +/- 0.02% of the flux of the parent star. The variation in the measured fractional flux is very nearly flat over the entire wavelength range and shows no indication of significant absorption by water or methane, in contrast with the predictions of most atmospheric models. Models with strong day/night differences appear to be disfavored by the data, suggesting that heat redistribution to the night side of the planet is highly efficient.
199 - D. K. Sing , F. Pont , S. Aigrain 2011
We present Hubble Space Telescope optical and near-ultraviolet transmission spectra of the transiting hot-Jupiter HD189733b, taken with the repaired Space Telescope Imaging Spectrograph (STIS) instrument. The resulting spectra cover the range 2900-57 00 Ang and reach per-exposure signal-to-noise levels greater than 11,000 within a 500 Ang bandwidth. We used time series spectra obtained during two transit events to determine the wavelength dependance of the planetary radius and measure the exoplanets atmospheric transmission spectrum for the first time over this wavelength range. Our measurements, in conjunction with existing HST spectra, now provide a broadband transmission spectrum covering the full optical regime. The STIS data also shows unambiguous evidence of a large occulted stellar spot during one of our transit events, which we use to place constraints on the characteristics of the K dwarfs stellar spots, estimating spot temperatures around Teff~4250 K. With contemporaneous ground-based photometric monitoring of the stellar variability, we also measure the correlation between the stellar activity level and transit-measured planet-to-star radius contrast, which is in good agreement with predictions. We find a planetary transmission spectrum in good agreement with that of Rayleigh scattering from a high-altitude atmospheric haze as previously found from HST ACS camera. The high-altitude haze is now found to cover the entire optical regime and is well characterised by Rayleigh scattering. These findings suggest that haze may be a globally dominant atmospheric feature of the planet which would result in a high optical albedo at shorter optical wavelengths.
High-resolution spectroscopy (R $ge$ 20,000) at near-infrared wavelengths can be used to investigate the composition, structure, and circulation patterns of exoplanet atmospheres. However, up to now it has been the exclusive dominion of the biggest t elescope facilities on the ground, due to the large amount of photons necessary to measure a signal in high-dispersion spectra. Here we show that spectrographs with a novel design - in particular a large spectral range - can open exoplanet characterisation to smaller telescope facilities too. We aim to demonstrate the concept on a series of spectra of the exoplanet HD 189733 b taken at the Telescopio Nazionale Galileo with the near-infrared spectrograph GIANO during two transits of the planet. In contrast to absorption in the Earths atmosphere (telluric absorption), the planet transmission spectrum shifts in radial velocity during transit due to the changing orbital motion of the planet. This allows us to remove the telluric spectrum while preserving the signal of the exoplanet. The latter is then extracted by cross-correlating the residual spectra with template models of the planet atmosphere computed through line-by-line radiative transfer calculations, and containing molecular absorption lines from water and methane. By combining the signal of many thousands of planet molecular lines, we confirm the presence of water vapour in the atmosphere of HD 189733 b at the 5.5-$sigma$ level. This signal was measured only in the first of the two observing nights. By injecting and retrieving artificial signals, we show that the non-detection on the second night is likely due to an inferior quality of the data. The measured strength of the planet transmission spectrum is fully consistent with past CRIRES observations at the VLT, excluding a strong variability in the depth of molecular absorption lines.
Here we present the analysis of multi-epoch secondary eclipse observations of HD 189733b and HD 209458b as a probe of temporal variability in the planetary climate using both Spitzer channels 1 and 2 (3.6 and 4.5 um). Constraining temporal variabilit y will inform models and identify physical processes occurring at either length scales too small to directly observe or at pressure levels that are inaccessible to transit observations. We do not detect statistically significant variability and are able to place useful upper limits on the IR variability amplitudes in these atmospheres. There are very few planets with multi-epoch observations at the required precision to probe variability in dayside emission. The observations considered in this study span several years, providing insight into temporal variability at multiple timescales. In the case of HD 189733b, the best fit eclipse depths for the channel 2 observations exhibit a scatter of 102 ppm about a median depth of 1827 ppm and in channel 1 exhibit a scatter of 88 ppm about a median depth of 1481 ppm. For HD 209458b, the best fit eclipse depths for the channel 2 observations exhibit a scatter of 22 ppm about a median depth of 1406 ppm and in channel 1 exhibit a scatter of 131 ppm about a median depth of 1092 ppm. The precision and scatter in these observations allow us to constrain variability to less than (5.6% and 6.0%) and (12% and 1.6%) for channels (1,2) of HD 189733b and HD 209458b respectively. There is a difference in the best fit eclipse timing compared to the predicted time consistent with an offset hotspot as predicted by GCMs and confirmed in previous phase curve observations.
Using the POLISH instrument, I am unable to reproduce the large-amplitude polarimetric observations of Berdyugina et al. (2008) to the >99.99% confidence level. I observe no significant polarimetric variability in the HD 189733 system, and the upper limit to variability from the exoplanet is Delta_P < 7.9 x 10^(-5) with 99% confidence in the 400 nm to 675 nm wavelength range. Berdyugina et al. (2008) report polarized, scattered light from the atmosphere of the HD 189733b hot Jupiter with an amplitude of two parts in 10^4. Such a large amplitude is over an order of magnitude larger than expected given a geometric albedo similar to other hot Jupiters. However, my non-detection of polarimetric variability phase-locked to the orbital period of the exoplanet, and the lack of any significant variability, shows that the polarimetric modulation reported by Berdyugina et al. (2008) cannot be due to the exoplanet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا