In this paper we present a discrete dynamical population modeling of invasive species, with reference to the swamp crayfish Procambarus clarkii. Since this species can cause environmental damage of various kinds, it is necessary to evaluate its expected in not yet infested areas. A structured discrete model is built, taking into account all biological information we were able to find, including the environmental variability implemented by means of stochastic parameters (coefficients of fertility, death, etc.). This model is based on a structure with 7 age classes, i.e. a Leslie mathematical population modeling type and it is calibrated with laboratory data provided by the Department of Evolutionary Biology (DEB) of Florence (Italy). The model presents many interesting aspects: the population has a high initial growth, then it stabilizes similarly to the logistic growth, but then it exhibits oscillations (a kind of limit-cycle attractor in the phase plane). The sensitivity analysis shows a good resilience of the model and, for low values of reproductive female fraction, the fluctuations may eventually lead to the extinction of the species: this fact might be exploited as a controlling factor. Moreover, the probability of extinction is valuated with an inverse Gaussian that indicates a high resilience of the species, confirmed by experimental data and field observation: this species has diffused in Italy since 1989 and it has shown a natural tendency to grow. Finally, the spatial mobility is introduced in the model, simulating the movement of the crayfishes in a virtual lake of elliptical form by means of simple cinematic rules encouraging the movement towards the banks of the catchment (as it happens in reality) while a random walk is imposed when the banks are reached.