ﻻ يوجد ملخص باللغة العربية
Simulating a system of two driven coupled qubits, we show that the time-averaged probability to find one driven qubit in its ground or excited state can be controlled by an ac drive in the second qubit. Moreover, off-diagonal elements of the density matrix responsible for quantum coherence can also be controlled via driving the second qubit, i.e., quantum coherence can be enhanced by appropriate choice of the bi-harmonic signal. Such a dynamic synchronization of two differently driven qubits has an analogy with harmonic mixing of Brownian particles forced by two signals through a substrate. Nevertheless, the quantum synchronization in two qubits occurs due to multiplicative coupling of signals in the qubits rather than via a nonlinear harmonic mixing for a classical nano-particle.
We investigate the difference between classical and quantum dynamics of coupled magnetic dipoles. We prove that in general the dynamics of the classical interaction Hamiltonian differs from the corresponding quantum model, regardless of the initial s
We theoretically investigate a possibility to establish multi-qubit quantum correlations in one-dimensional chains of qubits. We combine a reservoir engineering strategy with coherent dynamics to generate multi-qubit entangled states. We find that an
There are well-known protocols for performing CNOT quantum logic with qubits coupled by particular high-symmetry (Ising or Heisenberg) interactions. However, many architectures being considered for quantum computation involve qubits or qubits and res
Quantum annealing is an optimization technique which potentially leverages quantum tunneling to enhance computational performance. Existing quantum annealers use superconducting flux qubits with short coherence times, limited primarily by the use of
We study the quantum synchronization between a pair of two-level systems inside two coupled cavities. By using a digital-analog decomposition of the master equation that rules the system dynamics, we show that this approach leads to quantum synchroni