ﻻ يوجد ملخص باللغة العربية
The likelihood-free sequential Approximate Bayesian Computation (ABC) algorithms, are increasingly popular inference tools for complex biological models. Such algorithms proceed by constructing a succession of probability distributions over the parameter space conditional upon the simulated data lying in an $epsilon$--ball around the observed data, for decreasing values of the threshold $epsilon$. While in theory, the distributions (starting from a suitably defined prior) will converge towards the unknown posterior as $epsilon$ tends to zero, the exact sequence of thresholds can impact upon the computational efficiency and success of a particular application. In particular, we show here that the current preferred method of choosing thresholds as a pre-determined quantile of the distances between simulated and observed data from the previous population, can lead to the inferred posterior distribution being very different to the true posterior. Threshold selection thus remains an important challenge. Here we propose an automated and adaptive method that allows us to balance the need to minimise the threshold with computational efficiency. Moreover, our method which centres around predicting the threshold - acceptance rate curve using the unscented transform, enables us to avoid local minima - a problem that has plagued previous threshold schemes.
We propose a Markov chain Monte Carlo (MCMC) scheme to perform state inference in non-linear non-Gaussian state-space models. Current state-of-the-art methods to address this problem rely on particle MCMC techniques and its variants, such as the iter
Quantum annealing is a practical approach to execute the native instruction set of the adiabatic quantum computation model. The key of running adiabatic algorithms is to maintain a high success probability of evolving the system into the ground state
Approximate Bayesian computation (ABC) is computationally intensive for complex model simulators. To exploit expensive simulations, data-resampling via bootstrapping can be employed to obtain many artificial datasets at little cost. However, when usi
ABCpy is a highly modular scientific library for Approximate Bayesian Computation (ABC) written in Python. The main contribution of this paper is to document a software engineering effort that enables domain scientists to easily apply ABC to their re
The iterated conditional sequential Monte Carlo (i-CSMC) algorithm from Andrieu, Doucet and Holenstein (2010) is an MCMC approach for efficiently sampling from the joint posterior distribution of the $T$ latent states in challenging time-series model