ﻻ يوجد ملخص باللغة العربية
The emergence of large-scale magnetic fields observed in the diffuse interstellar medium is explained by a turbulent dynamo. The underlying transport coefficients have previously been extracted from numerical simulations. So far, this was restricted to the kinematic regime, but we aim to extend our analysis into the realm of dynamically important fields. This marks an important step on which derived mean-field models rely to explain observed equipartition strength fields. As in previous work, we diagnose turbulent transport coefficients by means of the test-field method. We derive quenching functions for the dynamo {alpha} effect, diamagnetic pumping, and turbulent diffusivity, which are compared with theoretical expectations. At late times, we observe the suppression of the vertical wind. Because this potentially affects the removal of small-scale magnetic helicity, new concerns arise about circumventing constraints imposed by the conservation of magnetic helicity at high magnetic Reynolds numbers. While present results cannot safely rule out this possibility, the issue only becomes important at late stages and is absent when the dynamo is quenched by the wind itself.
The interstellar medium of the Milky Way and nearby disk galaxies harbours large-scale coherent magnetic fields of Microgauss strength, that can be explained via the action of a mean-field dynamo. As in our previous work, we aim to quantify dynamo ef
The rich structure that we observe in molecular clouds is due to the interplay between strong magnetic fields and supersonic (turbulent) velocity fluctuations. The velocity fluctuations interact with the magnetic field, causing it too to fluctuate. U
We report a laser-plasma experiment that was carried out at the LMJ-PETAL facility and realized the first magnetized, turbulent, supersonic plasma with a large magnetic Reynolds number ($mathrm{Rm} approx 45$) in the laboratory. Initial seed magnetic
The properties of supersonic isothermal turbulence influence a variety of astrophysical phenomena, including the structure and evolution of star forming clouds. This work presents a simple model for the structure of dense regions in turbulence in whi
We study density fluctuations in supersonic turbulence using both theoretical methods and numerical simulations. A theoretical formulation is developed for the probability distribution function (PDF) of the density at steady state, connecting it to t