ﻻ يوجد ملخص باللغة العربية
The CO-H2 conversion factor (Xco; otherwise known as the X-factor) is observed to be remarkably constant in the Milky Way and in the Local Group (aside from the SMC). To date, our understanding of why Xco should be so constant remains poor. Using a combination of extremely high resolution (~ 1 pc) galaxy evolution simulations and molecular line radiative transfer calculations, we suggest that Xco displays a narrow range of values in the Galaxy due to the fact that molecular clouds share very similar physical properties. In our models, this is itself a consequence of stellar feedback competing against gravitational collapse. GMCs whose lifetimes are regulated by radiative feedback show a narrow range of surface densities, temperatures and velocity dispersions with values comparable to those seen in the Milky Way. As a result, the X-factors from these clouds show reasonable correspondence with observed data from the Local Group, and a relatively narrow range. On the other hand, feedback-free clouds collapse to surface densities that are larger than those seen in the Galaxy, and hence result in X-factors that are systematically too large compared to the Milky Ways. We conclude that radiative feedback within GMCs can generate cloud properties similar to those observed in the Galaxy, and hence a roughly constant Milky Way X-factor in normal, quiescent clouds.
Studying our Galaxy, the Milky Way (MW), gives us a close-up view of the interplay between cosmology, dark matter, and galaxy formation. In the next decade our understanding of the MWs dynamics, stellar populations, and structure will undergo a revol
The ages, metallicities, alpha-elements and integrals of motion of globular clusters (GCs) accreted by the Milky Way from disrupted satellites remain largely unchanged over time. Here we have used these conserved properties in combination to assign 7
A brief review is given of different methods used to determine the pattern speeds of the Galactic bar and spiral arms. The Galactic bar rotates rapidly, with corotation about halfway between the Galactic center and the Sun, and outer Lindblad resonan
We combine a series of high-resolution simulations with semi-analytic galaxy formation models to follow the evolution of a system resembling the Milky Way and its satellites. The semi-analytic model is based on that developed for the Millennium Simul
Recent studies suggest that only three of the twelve brightest satellites of the Milky Way (MW) inhabit dark matter halos with maximum circular velocity, V_max, exceeding 30km/s. This is in apparent contradiction with the LCDM simulations of the Aqua