ترغب بنشر مسار تعليمي؟ اضغط هنا

Complete Axiomatizations of Fragments of Monadic Second-Order Logic on Finite Trees

230   0   0.0 ( 0 )
 نشر من قبل Am
 تاريخ النشر 2012
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a specific class of tree structures that can represent basic structures in linguistics and computer science such as XML documents, parse trees, and treebanks, namely, finite node-labeled sibling-ordered trees. We present axiomatizations of the monadic second-order logic (MSO), monadic transitive closure logic (FO(TC1)) and monadic least fixed-point logic (FO(LFP1)) theories of this class of structures. These logics can express important properties such as reachability. Using model-theoretic techniques, we show by a uniform argument that these axiomatizations are complete, i.e., each formula that is valid on all finite trees is provable using our axioms. As a backdrop to our positive results, on arbitrary structures, the logics that we study are known to be non-recursively axiomatizable.



قيم البحث

اقرأ أيضاً

Let S be a commutative semiring. M. Droste and P. Gastin have introduced in 2005 weighted monadic second order logic WMSOL with weights in S. They use a syntactic fragment RMSOL of WMSOL to characterize word functions (power series) recognizable by w eighted automata, where the semantics of quantifiers is used both as arithmetical operations and, in the boolean case, as quantification. Already in 2001, B. Courcelle, J.Makowsky and U. Rotics have introduced a formalism for graph parameters definable in Monadic Second order Logic, here called MSOLEVAL with values in a ring R. Their framework can be easily adapted to semirings S. This formalism clearly separates the logical part from the arithmetical part and also applies to word functions. In this paper we give two proofs that RMSOL and MSOLEVAL with values in S have the same expressive power over words. One proof shows directly that MSOLEVAL captures the functions recognizable by weighted automata. The other proof shows how to translate the formalisms from one into the other.
We characterise the sentences in Monadic Second-order Logic (MSO) that are over finite structures equivalent to a Datalog program, in terms of an existential pebble game. We also show that for every class C of finite structures that can be expressed in MSO and is closed under homomorphisms, and for all integers l,k, there exists a *canonical* Datalog program Pi of width (l,k), that is, a Datalog program of width (l,k) which is sound for C (i.e., Pi only derives the goal predicate on a finite structure A if A is in C) and with the property that Pi derives the goal predicate whenever *some* Datalog program of width (l,k) which is sound for C derives the goal predicate. The same characterisations also hold for Guarded Second-order Logic (GSO), which properly extends MSO. To prove our results, we show that every class C in GSO whose complement is closed under homomorphisms is a finite union of constraint satisfaction problems (CSPs) of countably categorical structures.
The finite satisfiability problem of monadic second order logic is decidable only on classes of structures of bounded tree-width by the classic result of Seese (1991). We prove the following problem is decidable: Input: (i) A monadic second order l ogic sentence $alpha$, and (ii) a sentence $beta$ in the two-variable fragment of first order logic extended with counting quantifiers. The vocabularies of $alpha$ and $beta$ may intersect. Output: Is there a finite structure which satisfies $alphalandbeta$ such that the restriction of the structure to the vocabulary of $alpha$ has bounded tree-width? (The tree-width of the desired structure is not bounded.) As a consequence, we prove the decidability of the satisfiability problem by a finite structure of bounded tree-width of a logic extending monadic second order logic with linear cardinality constraints of the form $|X_{1}|+cdots+|X_{r}|<|Y_{1}|+cdots+|Y_{s}|$, where the $X_{i}$ and $Y_{j}$ are monadic second order variables. We prove the decidability of a similar extension of WS1S.
We address questions of logic and expressibility in the context of random rooted trees. Infiniteness of a rooted tree is not expressible as a first order sentence, but is expressible as an existential monadic second order sentence (EMSO). On the othe r hand, finiteness is not expressible as an EMSO. For a broad class of random tree models, including Galton-Watson trees with offspring distributions that have full support, we prove the stronger statement that finiteness does not agree up to a null set with any EMSO. We construct a finite tree and a non-null set of infinite trees that cannot be distinguished from each other by any EMSO of given parameters. This is proved via set-pebble Ehrenfeucht games (where an initial colouring round is followed by a given number of pebble rounds).
Quantified modal logic provides a natural logical language for reasoning about modal attitudes even while retaining the richness of quantification for referring to predicates over domains. But then most fragments of the logic are undecidable, over ma ny model classes. Over the years, only a few fragments (such as the monodic) have been shown to be decidable. In this paper, we study fragments that bundle quantifiers and modalities together, inspired by earlier work on epistemic logics of know-how/why/what. As always with quantified modal logics, it makes a significant difference whether the domain stays the same across worlds, or not. In particular, we show that the bundle $forall Box$ is undecidable over constant domain interpretations, even with only monadic predicates, whereas $exists Box$ bundle is decidable. On the other hand, over increasing domain interpretations, we get decidability with both $forall Box$ and $exists Box$ bundles with unrestricted predicates. In these cases, we also obtain tableau based procedures that run in PSPACE. We further show that the $exists Box$ bundle cannot distinguish between constant domain and increasing domain interpretations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا