In the article at hand, we sketch how, by utilizing nilpotency to its fullest extent (Engel, Super Engel) while using methods from the theory of universal enveloping algebras, a complete description of the indecomposable representations may be reached. In practice, the combinatorics is still formidable, though. It turns out that the method applies to both a class of ordinary Lie algebras and to a similar class of Lie superalgebras. Besides some examples, due to the level of complexity we will only describe a few precise results. One of these is a complete classification of which ideals can occur in the enveloping algebra of the translation subgroup of the Poincare group. Equivalently, this determines all indecomposable representations with a single, 1-dimensional source. Another result is the construction of an infinite-dimensional family of inequivalent representations already in dimension 12. This is much lower than the 24-dimensional representations which were thought to be the lowest possible. The complexity increases considerably, though yet in a manageable fashion, in the supersymmetric setting. Besides a few examples, only a subclass of ideals of the enveloping algebra of the super Poincare algebra will be determined in the present article.