ﻻ يوجد ملخص باللغة العربية
In a numerical investigation, we demonstrate the existence and curious evolution of vortices in a ladder-type three-level nonlinear atomic vapor with linear, cubic, and quintic susceptibilities considered simultaneously with the dressing effect. We find that the number of beads and topological charge of the incident beam, as well as its size, greatly affect the formation and evolution of vortices. To determine the number of induced vortices and the corresponding rotation direction, we give common rules associated with the initial conditions coming from various incident beams.
The multiple scattering of photons in a hot, resonant, atomic vapor is investigated and shown to exhibit a Levy Flight-like behavior. Monte Carlo simulations give insights into the frequency redistribution process that originates the long steps characteristic of this class of random walk phenomena.
We consider one- and two-dimensional (1D and 2D) optical or matter-wave media with a maximum of the local self-repulsion strength at the center, and a minimum at periphery. If the central area is broad enough, it supports ground states in the form of
We investigate numerically the dynamics of optical vortex beams carrying different topological charges, launched in a dissipative three level ladder type nonlinear atomic vapor. We impose the electromagnetically induced transparency (EIT) condition o
We describe the controlled observation of the nonequilibrium Ising-Bloch transition in a broad area nonlinear optical cavity, namely, a quasi-1D single longitudinal-mode photorefractive oscilator in a degenerate four-wave mixing configuration. Our ex
We report experimental observation of the conversion of a phase-invariant nonlinear system into a phase-locked one via the mechanism of rocking [G. J. de Valcarcel and K. Staliunas, Phys. Rev. E 67, 026604 (2003)]. This conversion results in that vor