ترغب بنشر مسار تعليمي؟ اضغط هنا

Reconstruction of Higgs bosons in the di-tau channel via 3-prong decay

108   0   0.0 ( 0 )
 نشر من قبل Kazuki Sakurai
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a method for reconstructing the mass of a particle, such as the Higgs boson, decaying into a pair of tau leptons, of which one subsequently undergoes a 3-prong decay. The kinematics is solved using information from the visible decay products, the missing transverse momentum, and the 3-prong tau decay vertex, with the detector resolution taken into account using a likelihood method. The method is shown to give good discrimination between a 125 GeV Higgs boson signal and the dominant backgrounds, such as Z decays to tau tau and W plus jets production. As a result, we find an improvement, compared to existing methods for this channel, in the discovery potential, as well as in measurements of the Higgs boson mass and production cross section times branching ratio.



قيم البحث

اقرأ أيضاً

We investigate the prospective reach of the 14 TeV HL-LHC for resonant production of a heavy Higgs boson that decays to two SM-like Higgs bosons in the $4b$ final state in the scalar singlet extended Standard Model. We focus on the reach for choices of parameters yielding a strong first order electroweak phase transition. The event selection follows the $4b$ analysis by the ATLAS Collaboration, enhanced with the use of a boosted decision tree method to optimize the discrimination between signal and background events. The output of the multivariate discriminant is used directly in the statistical analysis. The prospective reach of the $4b$ channel is compatible with previous projections for the $bbgammagamma$ and $4tau$ channels for heavy Higgs boson mass $m_2$ below 500 GeV and superior to these channels for $m_2 > 500$ GeV. With 3 ab$^{-1}$ of integrated luminosity, it is possible to discover the heavy Higgs boson in the $4b$ channel for $m_2< 500$ GeV in regions of parameter space yielding a strong first order electroweak phase transition and satisfying all other phenomenological constraints.
We study the prospects of measuring the CP property of the Higgs ($h$) coupling to tau leptons using the vector boson fusion (VBF) production mode at the high-luminosity LHC. Utilizing the previously proposed angle between the planes spanned by the m omentum vectors of the $(pi^+pi^0)$ and $(pi^- pi^0)$ pairs originating in $tau^pm$ decays as the CP-odd observable, we perform a detailed Monte Carlo analysis, taking into account the relevant standard model backgrounds, as well as detector resolution effects. We find that excluding a pure CP-odd coupling hypothesis requires $mathcal{O}(400 {~rm fb}^{-1})$ luminosity at the 14 TeV LHC, and values of the CP-mixing angle larger than about $25^circ$ can be excluded at $95%$ confidence level using $3 {~rm ab}^{-1}$ data. It is observed that the uncertainty in the angular resolution of the neutral pion momenta does not constitute a significant hurdle. Achieving a signal to background ratio ($S/B$) close to one, while keeping a high enough signal yield required to study the angular distributions selects out VBF as a promising mode to probe the CP nature of the $htautau$ coupling, with gluon fusion suffering from a low $S/B$, and the $W^pm h/Zh$ mode (with leptonically decaying $W^pm /Z$) having a much smaller signal rate.
80 - Jun Guo , Jinmian Li , Tianjun Li 2020
By representing each collider event as a point cloud, we adopt the Graphic Convolutional Network (GCN) with focal loss to reconstruct the Higgs jet in it. This method provides higher Higgs tagging efficiency and better reconstruction accuracy than th e traditional methods which use jet substructure information. The GCN, which is trained on events of the $H$+jets process, is capable of detecting a Higgs jet in events of several different processes, even though the performance degrades when there are boosted heavy particles other than the Higgs in the event. We also demonstrate the signal and background discrimination capacity of the GCN by applying it to the $tbar{t}$ process. Taking the outputs of the network as new features to complement the traditional jet substructure variables, the $tbar{t}$ events can be separated further from the $H$+jets events.
A coupling of a scalar, charged under an unbroken global U(1) symmetry, to the Standard Model via the Higgs portal is one of the simplest gateways to a dark sector. Yet, for masses $m_{S}geq m_{H}/2$ there are few probes of such an interaction. In th is note we evaluate the sensitivity to the Higgs portal coupling of di-Higgs boson production at the LHC as well as at a future high energy hadron collider, FCC-hh, taking into account the full momentum dependence of the process. This significantly impacts the sensitivity compared to estimates of changes in the Higgs-coupling based on the effective potential. We also compare our findings to precision single Higgs boson probes such as the cross section for vector boson associated Higgs production at a future lepton collider, e.g. FCC-ee, as well as searches for missing energy based signatures.
72 - B. C. Allanach 2019
We estimate the future sensitivity of the high luminosity (HL-) and high energy (HE-) modes of the Large Hadron Collider (LHC) and of a 100 TeV future circular collider (FCC-hh) to leptoquark (LQ) pair production in the muon-plus-jet decay mode of ea ch LQ. Such LQs are motivated by the fact they provide an explanation for the neutral current $B-$anomalies. For each future collider, Standard Model (SM) backgrounds and detector effects are simulated. From these, sensitivities of each collider are found. Our measures of sensitivity are based upon a Run II ATLAS search, which we also use for validation. We illustrate with a narrow scalar ($S_3$) LQ and find that, in our channel, the HL-LHC has exclusion sensitivity to LQ masses up to 1.8 TeV, the HE-LHC up to 4.8 TeV and the FCC-hh up to 13.5 TeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا