ﻻ يوجد ملخص باللغة العربية
We describe a method to measure the M-sigma relation in the non-local universe using dust-obscured QSOs. We present results from a pilot sample of nine 2MASS red QSOs with redshifts 0.14<z<0.37. We find that there is an offset (0.8 dex, on average) between the position of our objects and the local relation for AGN, in the sense that the majority of red QSO hosts have lower velocity dispersions and/or more massive BHs than local galaxies. These results are in agreement with recent studies of AGN at similar and higher redshifts. This could indicate an unusually rapid growth in the host galaxies since z~0.2, if these objects were to land in the local relation at present time. However, the z>0.1 AGN (including our sample and those of previous studies) have significantly higher BH mass than those of local AGN, so a direct comparison is not straightforward. Further, using several samples of local and higher-z AGN, we find a striking trend of an increasing offset with respect to the local M-sigma relation as a function of AGN luminosity, with virtually all objects with log(L_5100/erg s^-1) > 43.6 falling above the relation. Given the relatively small number of AGN at z>0.1 for which there are direct measurements of stellar velocity dispersions, it is impossible at present to determine whether there truly is evolution in M-sigma with redshift. Larger, carefully selected samples of AGN are necessary to disentangle the dependence of M-sigma on mass, luminosity, accretion rates, and redshift.
We examine the possibility that the observed relation between black-hole mass and host-galaxy stellar velocity dispersion (the M-sigma relation) is biased by an observational selection effect, the difficulty of detecting a black hole whose sphere of
(Abridged) We examine the evolution of the black hole mass - stellar velocity dispersion (M-sigma) relation over cosmic time using simulations of galaxy mergers that include feedback from supermassive black hole growth. We consider mergers of galaxie
Using data from the Sloan Digital Sky Survey (SDSS; data release 7), we have conducted a search for local analogs to the extremely compact, massive, quiescent galaxies that have been identified at z > 2. We show that incompleteness is a concern for s
We present an analysis of the z ~ 0 morphology-environment relation for 911 bright (M_B < -19) galaxies, matching classical RC3 morphologies to the SDSS-based group catalog of Yang et al. We study how the relative fractions of spirals, lenticulars, a
We report on recently derived improv