ترغب بنشر مسار تعليمي؟ اضغط هنا

Prospects for measuring the mass of heavy, long-lived neutral particles that decay to photons

284   0   0.0 ( 0 )
 نشر من قبل Ziqing Hong
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe a novel way to measure the mass of heavy, long-lived neutral particles that decay to photons using collider experiments. We focus on a Light Neutralino and Gravitino model in a Gauge Mediated Supersymmetry Breaking scenario where the neutralino has a long-lifetime (O(ns)) as it is not excluded by current experiments. To illustrate our method and give sensitivity estimates we use recent CDF results and a production mechanism where sparticles are produced via $phi_{i} rightarrow widetilde{chi}^{1}_{0} widetilde{chi}^{1}_{0} rightarrow (gamma widetilde{G})(gamma widetilde{G})$ in which $phi_{i}$ indicates a neutral scalar boson, $widetilde{chi}^{1}_{0}$ is the lightest neutralino and $widetilde{G}$ is the gravitino, as a full set of background shapes and rates are available. Events can be observed in the exclusive photon plus Missing $E_{T}$ final state where one photon arrives at the detector with a delayed time of arrival. Surprisingly, a simple measurement of the slope of the delayed-time distribution with the full CDF dataset is largely insensitive to all but the $widetilde{chi}^{1}_{0}$ mass and allows for the possibility of determining its mass to approximately 25% of itself.



قيم البحث

اقرأ أيضاً

160 - CDF Collaboration 2012
We present the results of the first hadron collider search for heavy, long-lived neutralinos that decay via lightest neutralino to gamma gravitino in gauge-mediated supersymmetry breaking models. Using an integrated luminosity of $570pm34 pb^{-1}$ of $pbar{p}$ collisions at $sqrt{s}=1.96$ TeV, we select $gamma$+jet+missing transverse energy candidate events based on the arrival time of a high-energy photon at the electromagnetic calorimeter as measured with a timing system that was recently installed on the CDF II detector. We find 2 events, consistent with the background estimate of 1.3$pm$0.7 events. While our search strategy does not rely on model-specific dynamics, we set cross section limits and place the world-best 95% C.L. lower limit on the neutralino mass of 101 GeV at lifetime = 5 ns.
We present a study on the possibility of searching for long-lived supersymmetric partners with the MoEDAL experiment at the LHC. MoEDAL is sensitive to highly ionising objects such as magnetic monopoles or massive (meta)stable electrically charged pa rticles. We focus on prospects of directly detecting long-lived sleptons in a phenomenologically realistic model which involves an intermediate neutral long-lived particle in the decay chain. This scenario is not yet excluded by the current data from ATLAS or CMS, and is compatible with astrophysical constraints. Using Monte Carlo simulation, we compare the sensitivities of MoEDAL versus ATLAS in scenarios where MoEDAL could provide discovery reach complementary to ATLAS and CMS, thanks to looser selection criteria combined with the virtual absence of background. It is also interesting to point out that, in such scenarios, in which charged staus are the main long-lived candidates, the relevant mass range for MoEDAL is compatible with a potential role of Supersymmetry in providing an explanation for the anomalous events observed by the ANITA detector.
Long-lived particles are predicted in extensions of the Standard Model that involve relatively light but very weakly interacting sectors. In this paper we consider the possibility that some of these particles are produced in atmospheric cosmic ray sh owers, and their decay intercepted by neutrino detectors such as IceCube or Super-Kamiokande. We present the methodology and evaluate the sensitivity of these searches in various scenarios, including extensions with heavy neutral leptons in models of massive neutrinos, models with an extra $U(1)$ gauge symmetry, and a combination of both in a $U(1)_{B-L}$ model. Our results are shown as a function of the production rate and the lifetime of the corresponding long-lived particles.
FASER,the ForwArd Search ExpeRiment,is a proposed experiment dedicated to searching for light, extremely weakly-interacting particles at the LHC. Such particles may be produced in the LHCs high-energy collisions and travel long distances through conc rete and rock without interacting. They may then decay to visible particles in FASER, which is placed 480 m downstream of the ATLAS interaction point. In this work we briefly describe the FASER detector layout and the status of potential backgrounds. We then present the sensitivity reach for FASER for a large number of long-lived particle models, updating previous results to a uniform set of detector assumptions, and analyzing new models. In particular, we consider all of the renormalizable portal interactions, leading to dark photons, dark Higgs bosons, and heavy neutral leptons (HNLs); light B-L and $L_i - L_j$ gauge bosons; axion-like particles (ALPs) that are coupled dominantly to photons, fermions, and gluons through non-renormalizable operators; and pseudoscalars with Yukawa-like couplings. We find that FASER and its follow-up, FASER 2, have a full physics program, with discovery sensitivity in all of these models and potentially far-reaching implications for particle physics and cosmology.
We investigate the collider signatures of neutral and charged Long-Lived Particles (LLPs), predicted by the Supersymmetric $B-L$ extension of the Standard Model (BLSSM), at the Large Hadron Collider (LHC). The BLSSM is a natural extension of the Mini mal Supersymmetric Standard Model (MSSM) that can account for non-vanishing neutrino masses. We show that the lightest right-handed sneutrino can be the Lightest Supersymmetric Particle (LSP), while the Next-to-the LSP (NLSP) is either the lightest left-handed sneutrino or the left-handed stau, which are natural candidates for the LLPs. We analyze the displaced vertex signature of the neutral LLP (the lightest left-handed sneutrino), and the charged tracks associated with the charged LLP (the left-handed stau). We show that the production cross sections of our neutral and charged LLPs are relatively large, namely of order ${cal O}(1)~{rm fb}$. Thus, probing these particles at the LHC is quite plausible. In addition, we find that the displaced di-lepton associated with the lightest left-handed sneutrino has a large impact parameter that discriminates it from other SM leptons. We also emphasize that the charged track associated with the left-handed stau has a large momentum with slow moving charged tracks, hence it is distinguished from the SM background and therefore it can be accessible at the LHC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا