ﻻ يوجد ملخص باللغة العربية
We describe a novel way to measure the mass of heavy, long-lived neutral particles that decay to photons using collider experiments. We focus on a Light Neutralino and Gravitino model in a Gauge Mediated Supersymmetry Breaking scenario where the neutralino has a long-lifetime (O(ns)) as it is not excluded by current experiments. To illustrate our method and give sensitivity estimates we use recent CDF results and a production mechanism where sparticles are produced via $phi_{i} rightarrow widetilde{chi}^{1}_{0} widetilde{chi}^{1}_{0} rightarrow (gamma widetilde{G})(gamma widetilde{G})$ in which $phi_{i}$ indicates a neutral scalar boson, $widetilde{chi}^{1}_{0}$ is the lightest neutralino and $widetilde{G}$ is the gravitino, as a full set of background shapes and rates are available. Events can be observed in the exclusive photon plus Missing $E_{T}$ final state where one photon arrives at the detector with a delayed time of arrival. Surprisingly, a simple measurement of the slope of the delayed-time distribution with the full CDF dataset is largely insensitive to all but the $widetilde{chi}^{1}_{0}$ mass and allows for the possibility of determining its mass to approximately 25% of itself.
We present the results of the first hadron collider search for heavy, long-lived neutralinos that decay via lightest neutralino to gamma gravitino in gauge-mediated supersymmetry breaking models. Using an integrated luminosity of $570pm34 pb^{-1}$ of
We present a study on the possibility of searching for long-lived supersymmetric partners with the MoEDAL experiment at the LHC. MoEDAL is sensitive to highly ionising objects such as magnetic monopoles or massive (meta)stable electrically charged pa
Long-lived particles are predicted in extensions of the Standard Model that involve relatively light but very weakly interacting sectors. In this paper we consider the possibility that some of these particles are produced in atmospheric cosmic ray sh
FASER,the ForwArd Search ExpeRiment,is a proposed experiment dedicated to searching for light, extremely weakly-interacting particles at the LHC. Such particles may be produced in the LHCs high-energy collisions and travel long distances through conc
We investigate the collider signatures of neutral and charged Long-Lived Particles (LLPs), predicted by the Supersymmetric $B-L$ extension of the Standard Model (BLSSM), at the Large Hadron Collider (LHC). The BLSSM is a natural extension of the Mini