ﻻ يوجد ملخص باللغة العربية
We propose and discuss a new approach to the analysis of the correlation functions which contain light-like Wilson lines or loops, the latter being cusped in addition. The objects of interest are therefore the light-like Wilson null-polygons, the soft factors of the parton distribution and fragmentation functions, high-energy scattering amplitudes in the eikonal approximation, gravitational Wilson lines, etc. Our method is based on a generalization of the universal quantum dynamical principle by J. Schwinger and allows one to take care of extra singularities emerging due to light-like or semi-light-like cusps. We show that such Wilson loops obey a differential equation which connects the area variations and renormalization group behavior of those objects and discuss the possible relation between geometrical structure of the loop space and area evolution of the light-like cusped Wilson loops.
We discuss the possible relation between the singular structure of TMDs on the light-cone and the geometrical behaviour of rectangular Wilson loops.
We discuss the possible relation between certain geometrical properties of the loop space and energy evolution of the cusped Wilson exponentials defined on the light-cone. Analysis of the area differential equations for this special class of the Wils
In the framework of effective string theory (EST), the asymptotic behavior of a large Wilson loop in confining gauge theories can be expressed via Laplace determinant with Dirichlet boundary condition on the Wilson contour. For a general polygonal re
Equations of motion for the light-like QCD Wilson loops are studied in the generalized loop space (GLS) setting. To this end, the classically conformal-invariant non-local variations of the cusped Wilson exponentials lying (partially) on the light-co
The asymptotic behavior of Wilson loops in the large-size limit ($Lrightarrowinfty$) in confining gauge theories with area law is controlled by effective string theory (EST). The $L^{-2}$ term of the large-size expansion for the logarithm of Wilson l