ﻻ يوجد ملخص باللغة العربية
In this paper we optimize constellation sets to be used for channels affected by phase noise. The main objective is to maximize the achievable mutual information of the constellation under a given power constraint. The mutual information and pragmatic mutual information of a given constellation is calculated approximately assuming that both the channel and phase noise are white. Then a simulated annealing algorithm is used to jointly optimize the constellation and the binary labeling. The performance of optimized constellations is compared with conventional constellations showing considerable gains in all system scenarios.
In this paper we use a variation of simulated annealing algorithm for optimizing two-dimensional constellations with 32 signals. The main objective is to maximize the symmetric pragmatic capacity under the peak-power constraint. The method allows the
In this paper we derive closed-form formulas of feedback capacity and nonfeedback achievable rates, for Additive Gaussian Noise (AGN) channels driven by nonstationary autoregressive moving average (ARMA) noise (with unstable one poles and zeros), bas
Existing studies about ambient backscatter communication mostly assume flat-fading channels. However, frequency-selective channels widely exist in many practical scenarios. Therefore, this paper investigates ambient backscatter communication systems
We describe a low complexity method for time domain compensation of phase noise in OFDM systems. We extend existing methods in several respects. First we suggest using the Karhunen-Lo{e}ve representation of the phase noise process to estimate the pha
This paper investigates the linear precoder design for $K$-user interference channels of multiple-input multiple-output (MIMO) transceivers under finite alphabet inputs. We first obtain general explicit expressions of the achievable rate for users in