ﻻ يوجد ملخص باللغة العربية
We show that if an inclusion of finite groups H < G of index prime to p induces a homeomorphism of mod p cohomology varieties, or equivalently an F-isomorphism in mod p cohomology, then H controls p-fusion in G, if p is odd. This generalizes classical results of Quillen who proved this when H is a Sylow p-subgroup, and furthermore implies a hitherto difficult result of Mislin about cohomology isomorphisms. For p=2 we give analogous results, at the cost of replacing mod p cohomology with higher chromatic cohomology theories. The results are consequences of a general algebraic theorem we prove, that says that isomorphisms between p-fusion systems over the same finite p-group are detected on elementary abelian p-groups if p odd and abelian 2-groups of exponent at most 4 if p=2.
Johnsons characterization of amenable groups states that a discrete group $Gamma$ is amenable if and only if $H_b^{n geq 1}(Gamma; V) = 0$ for all dual normed $mathbb{R}[Gamma]$-modules $V$. In this paper, we extend the previous result to homomorphis
We give an algebraic proof for the result of Eilenberg and Mac Lane that the second cohomology group of a simplicial group G can be computed as a quotient of a fibre product involving the first two homotopy groups and the first Postnikov invariant of
We determine the mod $2$ cohomology over the Steenrod algebra of the classifying spaces of the free loop groups $LG$ for compact groups $G=Spin(7)$, $Spin(8)$, $Spin(9)$, and $F_4$. Then, we show that they are isomorphic as algebras over the Steenrod
If $G$ has $4$-periodic cohomology, then D2 complexes over $G$ are determined up to polarised homotopy by their Euler characteristic if and only if $G$ has at most two one-dimensional quaternionic representations. We use this to solve Walls D2 proble
We show that for every injective continuous map f: S^2 --> R^3 there are four distinct points in the image of f such that the convex hull is a tetrahedron with the property that two opposite edges have the same length and the other four edges are als