ﻻ يوجد ملخص باللغة العربية
Quantum Dimer Models (QDM) arise as low energy effective models for frustrated magnets. Some of these models have proven successful in generating a scenario for exotic spin liquid phases with deconfined spinons. Doping, i.e. the introduction of mobile holes, has been considered within the QDM framework and partially studied. A fundamental issue is the possible existence of a superconducting phase in such systems and its properties. For this purpose, the question of the statistics of the mobile holes (or holons) shall be addressed first. Such issues are studied in details in this paper for generic doped QDM defined on the most common two-dimensional lattices (square, triangular, honeycomb, kagome,...) and involving general resonant loops. We prove a general statistical transmutation symmetry of such doped QDM by using composite operators of dimers and holes. This exact transformation enables to define duality equivalence classes (or families) of doped QDM, and provides the analytic framework to analyze dynamical statistical transmutations. We discuss various possible superconducting phases of the system. In particular, the possibility of an exotic superconducting phase originating from the condensation of (bosonic) charge-e holons is examined. A numerical evidence of such a superconducting phase is presented in the case of the triangular lattice, by introducing a novel gauge-invariant holon Greens function. We also make the connection with a Bose-Hubbard model on the kagome lattice which gives rise, as an effective model in the limit of strong interactions, to a doped QDM on the triangular lattice.
We examine antiferromagnetic and d-wave superfluid phases of cold fermionic atoms with repulsive interactions in a two-dimensional optical lattice combined with a harmonic trapping potential. For experimentally realistic parameters, the trapping pote
We study the magnetic orbital effect of a doped two-leg ladder in the presence of a magnetic field component perpendicular to the ladder plane. Combining both low-energy approach (bosonization) and numerical simulations (density-matrix renormalizatio
We study and solve the ground-state problem of a microscopic model for a family of orbitally degenerate quantum magnets. The orbital degrees of freedom are assumed to have directional character and are represented by static Potts-like variables. In t
We discuss how quantum dimer models may be used to provide proofs of principle for the existence of exotic magnetic phases in quantum spin systems.
Since its discovery, iron-based superconductivity has been known to develop near an antiferromagnetic order, but this paradigm fails in the iron chalcogenide FeSe, whose single-layer version holds the record for the highest superconducting transition