ترغب بنشر مسار تعليمي؟ اضغط هنا

Phonon-mediated population inversion in a semiconductor quantum-dot cavity system

278   0   0.0 ( 0 )
 نشر من قبل Stephen Hughes
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate pump-induced exciton inversion in a quantum-dot cavity system with continuous wave drive. Using a polaron-based master equation, we demonstrate excited-state populations above 0.9 for an InAs dot at a phonon bath temperature of 4K. In an exciton-driven system, the dominant mechanism is incoherent excitation from the phonon bath. For cavity driving, the mechanism is phonon-mediated switching between ground- and excited-state branches of the ladder of photon states, as quantum trajectory simulations clearly show. The exciton inversion as a function of detuning is found to be qualitatively different for exciton and cavity driving, primarily due to cavity filtering. The master equation approach allows us to include important radiative and non-radiative decay processes on the zero phonon line, provides a clear underlying dynamic in terms of photon and phonon scattering, and admits simple analytical approximations that help to explain the physics.



قيم البحث

اقرأ أيضاً

We propose a scheme to efficiently couple a single quantum dot electron spin to an optical nano-cavity, which enables us to simultaneously benefit from a cavity as an efficient photonic interface, as well as to perform high fidelity (nearly 100%) spi n initialization and manipulation achievable in bulk semiconductors. Moreover, the presence of the cavity speeds up the spin initialization process beyond GHz.
137 - S. Hughes , C. Roy 2011
We present a semiconductor master equation technique to study the input/output characteristics of coherent photon transport in a semiconductor waveguide-cavity system containing a single quantum dot. We use this approach to investigate the effects of photon propagation and anharmonic cavity-QED for various dot-cavity interaction strengths, including weakly-coupled, intermediately-coupled, and strongly-coupled regimes. We demonstrate that for mean photon numbers much less than 0.1, the commonly adopted weak excitation (single quantum) approximation breaks down, even in the weak coupling regime. As a measure of the anharmonic multiphoton-correlations, we compute the Fano factor and the correlation error associated with making a semiclassical approximation. We also explore the role of electron--acoustic-phonon scattering and find that phonon-mediated scattering plays a qualitatively important role on the light propagation characteristics. As an application of the theory, we simulate a conditional phase gate at a phonon bath temperature of $20 $K in the strong coupling regime.
Cavities embedded in photonic crystal waveguides offer a promising route towards large scale integration of coupled resonators for quantum electrodynamics applications. In this letter, we demonstrate a strongly coupled system formed by a single quant um dot and such a photonic crystal cavity. The resonance originating from the cavity is clearly identified from the photoluminescence mapping of the out-of-plane scattered signal along the photonic crystal waveguide. The quantum dot exciton is tuned towards the cavity mode by temperature control. A vacuum Rabi splitting of ~ 140 mueV is observed at resonance.
We describe how quantum dot semiconductor cavity systems can be engineered to realize anisotropy-induced dipole-dipole coupling between orthogonal dipole states in a single quantum dot. Quantum dots in single-mode cavity structures as well as photoni c crystal waveguides coupled to spin states or linearly polarized excitons are considered. We demonstrate pronounced dipole-dipole coupling to control the radiative decay rate of excitons and form pure entangled states in the long time limit. We investigate both field-free entanglement evolution and coherently pumped exciton regimes, and show how a double pumping scenario can completely eliminate the decay of coherent Rabi oscillations and lead to population trapping. In the Mollow regime, we explore the emitted spectra from the driven dipoles and show how a non-pumped dipole can take on the form of a spectral triplet, quintuplet, or a singlet, which has applications for producing subnatural linewidth single photons and more easily accessing regimes of high-field quantum optics and cavity-QED.
We propose a device for studying the Fermi-Hubbard model with long-range Coulomb interactions using an array of quantum dots defined in a semiconductor two-dimensional electron gas system. Bands with energies above the lowest energy band are used to form the Hubbard model, which allows for an experimentally simpler realization of the device. We find that depending on average electron density, the system is well described by a one- or two-band Hubbard model. Our device design enables the control of the ratio of the Coulomb interaction to the kinetic energy of the electrons independently to the filling of the quantum dots, such that a large portion of the Hubbard phase diagram may be probed. Estimates of the Hubbard parameters suggest that a metal-Mott insulator quantum phase transition and a d-wave superconducting phase should be observable using current fabrication technologies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا