A topological extension of general relativity is presented. The superposition principle of quantum mechanics, as formulated by the Feynman path integral, is taken as a starting point. It is argued that the trajectories that enter this path integral are distinct, despite any quantum uncertainty in geometry, and thus that space-time topology is multiply connected. Specifically, space-time at the Planck scale consists of a lattice of three-tori that facilitates many distinct paths for particles to travel along. To add gravity, mini black holes are attached to this lattice. These mini black holes represent Wheelers quantum foam and result from the fact that GR is not conformally invariant. The stable creation of such mini black holes is found to be caused by the existence of macroscopic (so long-lived) black holes. This connection, by which macroscopic black holes induce mini black holes, is a topological expression of Machs principle. The proposed topological extension of GR can be tested because, if correct, the dark energy density of the universe should be linearly proportional to the total number of macroscopic black holes in the universe at any time. This prediction, although strange, agrees with current astrophysical observations.