ترغب بنشر مسار تعليمي؟ اضغط هنا

PHIL photoinjector test line

118   0   0.0 ( 0 )
 نشر من قبل Christelle Bruni
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

LAL is now equiped with its own platform for photoinjectors tests and Research and Developement, named PHIL (PHotoInjectors at LAL). This facility has two main purposes: push the limits of the photoinjectors performances working on both the design and the associated technology and provide a low energy (MeV) short pulses (ps) electron beam for the interested users. Another very important goal of this machine will be to provide an opportunity to form accelerator physics students, working in a high technology environment. To achieve this goal a test line was realised equipped with an RF source, magnets and beam diagnostics. In this article we will desrcibe the PHIL beamline and its characteristics together with the description of the first two photoinjector realised in LAL and tested: the ALPHAX and the PHIN RF Guns.



قيم البحث

اقرأ أيضاً

The use of existing linacs, and in particular light source injectors, for free-electron laser (FEL) experiments is becoming more common due to the desire to test FELs at ever shorter wavelengths. The high-brightness, high-current beams required by hi gh-gain FELs impose technical specifications that most existing linacs were not designed to meet. Moreover, the need for specialized diagnostics, especially shot-to-shot data acquisition, demands substantial modification and upgrade of conventional linacs. Improvements have been made to the Advanced Photon Source (APS) injector linac in order to produce and characterize high-brightness beams. Specifically, effort has been directed at generating beams suitable for use in the low-energy undulator test line (LEUTL) FEL in support of fourth-generation light source research. The enhancements to the linac technical and diagnostic capabilities that allowed for self-amplified spontaneous emission (SASE) operation of the FEL at 530 nm are described. Recent results, including details on technical systems improvements and electron beam measurement techniques, will be discussed. The linac is capable of accelerating beams to over 650 MeV. The nominal FEL beam parameters used are as follows: 217 MeV energy; 0.1-0.2% rms energy spread; 4-8 um normalized rms emittance; 80-120 A peak current from a 0.2-0.7 nC charge at a 2-7 ps FWHM bunch.
A new laser-wire is being installed in the extraction line of the ATF at KEK. This device aims at demonstrating that laser-wires can be used to measure micrometre scale beam size.
X-ray Free Electron Lasers (XFELs) have been proven to generate short and powerful radiation pulses allowing for a wide class of novel experiments. If an XFEL facility supports the generation of two X-ray pulses with different wavelengths and control lable delay, the range of possible experiments is broadened even further to include X-ray-pump/X-ray-probe applications. In this work we discuss the possibility of applying a simple and cost-effective method for producing two-color pulses at the SASE3 soft X-ray beamline of the European XFEL. The technique is based on the installation of a magnetic chicane in the baseline undulator and can be accomplished in several steps. We discuss the scientific interest of this upgrade for the Small Quantum Systems (SQS) instrument, in connection with the high-repetition rate of the European XFEL, and we provide start-to-end simulations up to the radiation focus on the sample, proving the feasibility of our concept.
The design of the Linac Coherent Light Source assumes that a low-emittance, 1-nC, 10-ps beam will be available for injection into the 15-GeV linac. The proposed rf photocathode injector that will provide a 150-MeV beam with rms normalized emittances of 1 mm in both the transverse and longitudinal dimensions is based on a 1.6-cell S-band rf gun that is equipped with an emittance compensating solenoid. The booster accelerator is positioned at the beam waist coinciding with the first emittance maximum and is provided with an accelerating gradient of ~25 MeV/m, i.e., the new working point. The uv pulses required for cathode excitation will be generated by tripling the output of a Ti:sapphire laser system consisting of a highly stable cw mode-locked oscillator and two bow-tie amplifiers pumped by a pair of Q-switched Nd:YAG lasers. The large bandwidth of the Ti:sapphire system accommodates the desired temporal pulse shaping. Details of the design and the supporting simulations are presented.
We are experimentally investigating possible violations of standard quantum mechanics predictions in the Gran Sasso underground laboratory in Italy. We test with high precision the Pauli Exclusion Principle and the collapse of the wave function (coll apse models). We present our method of searching for possible small violations of the Pauli Exclusion Principle (PEP) for electrons, through the search for anomalous X-ray transitions in copper atoms, produced by fresh electrons (brought inside the copper bar by circulating current) which can have the probability to undergo Pauli-forbidden transition to the 1 s level already occupied by two electrons and we describe the VIP2 (VIolation of PEP) experiment under data taking at the Gran Sasso underground laboratories. In this paper the new VIP2 setup installed in the Gran Sasso underground laboratory will be presented. The goal of VIP2 is to test the PEP for electrons with unprecedented accuracy, down to a limit in the probability that PEP is violated at the level of 10$^{-31}$. We show preliminary experimental results and discuss implications of a possible violation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا