ﻻ يوجد ملخص باللغة العربية
We study a basic algorithmic problem in algebraic geometry, which we call NNL, of constructing a normalizing map as per Noethers Normalization Lemma. For general explicit varieties, as formally defined in this paper, we give a randomized polynomial-time Monte Carlo algorithm for this problem. For some interesting cases of explicit varieties, we give deterministic quasi-polynomial time algorithms. These may be contrasted with the standard EXPSPACE-algorithms for these problems in computational algebraic geometry. In particular, we show that: (1) The categorical quotient for any finite dimensional representation $V$ of $SL_m$, with constant $m$, is explicit in characteristic zero. (2) NNL for this categorical quotient can be solved deterministically in time quasi-polynomial in the dimension of $V$. (3) The categorical quotient of the space of $r$-tuples of $m times m$ matrices by the simultaneous conjugation action of $SL_m$ is explicit in any characteristic. (4) NNL for this categorical quotient can be solved deterministically in time quasi-polynomial in $m$ and $r$ in any characteristic $p$ not in $[2, m/2]$. (5) NNL for every explicit variety in zero or large enough characteristic can be solved deterministically in quasi-polynomial time, assuming the hardness hypothesis for the permanent in geometric complexity theory. The last result leads to a geometric complexity theory approach to put NNL for every explicit variety in P.
These are lectures notes for the introductory graduate courses on geometric complexity theory (GCT) in the computer science department, the university of Chicago. Part I consists of the lecture notes for the course given by the first author in the sp
This article has been withdrawn because it has been merged with the earlier article GCT3 (arXiv: CS/0501076 [cs.CC]) in the series. The merged article is now available as: Geometric Complexity Theory III: on deciding nonvanishing of a Littlewood-Ri
The problem of graph Reachability is to decide whether there is a path from one vertex to another in a given graph. In this paper, we study the Reachability problem on three distinct graph families - intersection graphs of Jordan regions, unit contac
This article describes a {em nonstandard} quantum group that may be used to derive a positive formula for the plethysm problem, just as the standard (Drinfeld-Jimbo) quantum group can be used to derive the positive Littlewood-Richardson rule for arbi
Geometric complexity theory (GCT) is an approach to the P vs. NP and related problems. This article gives its complexity theoretic overview without assuming any background in algebraic geometry or representation theory.