ترغب بنشر مسار تعليمي؟ اضغط هنا

Hubble Space Telescope H-alpha imaging of star-forming galaxies at z = 1-1.5: evolution in the size and luminosity of giant HII regions

149   0   0.0 ( 0 )
 نشر من قبل Rachael Livermore
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present HST/WFC3 narrowband imaging of the H-alpha emission in a sample of eight gravitationally-lensed galaxies at z = 1 - 1.5. The magnification caused by the foreground clusters enables us to obtain a median source plane spatial resolution of 360pc, as well as providing magnifications in flux ranging from ~10x to ~50x. This enables us to identify resolved star-forming HII regions at this epoch and therefore study their H-alpha luminosity distributions for comparisons with equivalent samples at z ~ 2 and in the local Universe. We find evolution in the both luminosity and surface brightness of HII regions with redshift. The distribution of clump properties can be quantified with an HII region luminosity function, which can be fit by a power law with an exponential break at some cut-off, and we find that the cut-off evolves with redshift. We therefore conclude that `clumpy galaxies are seen at high redshift because of the evolution of the cut-off mass; the galaxies themselves follow similar scaling relations to those at z = 0, but their HII regions are larger and brighter and thus appear as clumps which dominate the morphology of the galaxy. A simple theoretical argument based on gas collapsing on scales of the Jeans mass in a marginally unstable disk shows that the clumpy morphologies of high-z galaxies are driven by the competing effects of higher gas fractions causing perturbations on larger scales, partially compensated by higher epicyclic frequencies which stabilise the disk.



قيم البحث

اقرأ أيضاً

We present the highest redshift detections of resolved Lyman alpha emission, using Hubble Space Telescope/ACS F658N narrowband-imaging data taken in parallel with the Wide Field Camera 3 Early Release Science program in the GOODS CDF-S. We detect Lym an alpha emission from three spectroscopically confirmed z = 4.4 Lyman alpha emitting galaxies (LAEs), more than doubling the sample of LAEs with resolved Lyman alpha emission. Comparing the light distribution between the rest-frame ultraviolet continuum and narrowband images, we investigate the escape of Lyman alpha photons at high redshift. While our data do not support a positional offset between the Lyman alpha and rest-frame ultraviolet (UV) continuum emission, the half-light radii in two out of the three galaxies are significantly larger in Lyman alpha than in the rest-frame UV continuum. This result is confirmed when comparing object sizes in a stack of all objects in both bands. Additionally, the narrowband flux detected with HST is significantly less than observed in similar filters from the ground. These results together imply that the Lyman alpha emission is not strictly confined to its indigenous star-forming regions. Rather, the Lyman alpha emission is more extended, with the missing HST flux likely existing in a diffuse outer halo. This suggests that the radiative transfer of Lyman alpha photons in high-redshift LAEs is complicated, with the interstellar-medium geometry and/or outflows playing a significant role in galaxies at these redshifts.
We report the first results of a long term program aiming to provide accurate independent estimates of the Hubble constant (H0) using the L-sigma distance estimator for Giant extragalactic HII regions (GEHR) and HII galaxies. We have used VLT and S ubaru high dispersion spectroscopic observations of a local sample of HII galaxies, identified in the SDSS DR7 catalogue in order to re-define and improve the L(Hbeta)-sigma distance indicator and to determine the Hubble constant. To this end we utilized as local calibration or `anchor of this correlation, GEHR in nearby galaxies which have accurate distance measurements determined via primary indicators. Using our best sample of 69 nearby HII galaxies and 23 GEHR in 9 galaxies we obtain H0=74.3 +- 3.1 (statistical) +- 2.9 (systematic) km /s Mpc, in excellent agreement with, and independently confirming, the most recent SNe Ia based results.
We present the properties of 8 star-forming regions, or clumps, in 3 galaxies at z~1.3 from the WiggleZ Dark Energy Survey, which are resolved with the OSIRIS integral field spectrograph. Within turbulent discs, sigma~90 km/s, clumps are measured wit h average sizes of 1.5 kpc and average Jeans masses of 4.2 x 10^9 Msolar, in total accounting for 20-30 per cent of the stellar mass of the discs. These findings lend observational support to models that predict larger clumps will form as a result of higher disc velocity dispersions driven-up by cosmological gas accretion. As a consequence of the changes in global environment, it may be predicted that star-forming regions at high redshift should not resemble star-forming regions locally. Yet despite the increased sizes and dispersions, clumps and HII regions are found to follow tight scaling relations over the range z=0-2 for size, velocity dispersion, luminosity, and mass when comparing >2000 HII regions locally and 30 clumps at z>1 (sigma propto r^{0.42+/-0.03}, L(Halpha) propto r^{2.72+/-0.04}, L(Halpha) propto sigma^{4.18+/-0.21}, and L(Halpha) propto M_{Jeans}^{1.24+/-0.05}). We discuss these results in the context of the existing simulations of clump formation and evolution, with an emphasis on the processes that drive-up the turbulent motions in the interstellar medium. Our results indicate that while the turbulence of discs may have important implications for the size and luminosity of regions which form within them, the same processes govern their formation from high redshift to the current epoch.
110 - Guilin Liu 2013
We present HST/WFC3 narrow-band imaging of the starburst galaxy M83 targeting the hydrogen recombination lines (H$beta$, H$alpha$ and Pa$beta$), which we use to investigate the dust extinction in the HII regions. We derive extinction maps with 6 pars ec spatial resolution from two combinations of hydrogen lines (H$alpha$/H$beta$ and H$alpha$/Pa$beta$), and show that the longer wavelengths probe larger optical depths, with $A_V$ values larger by $gtrsim$1 mag than those derived from the shorter wavelengths. This difference leads to a factor $gtrsim$2 discrepancy in the extinction-corrected H$alpha$ luminosity, a significant effect when studying extragalactic HII regions. By comparing these observations to a series of simple models, we conclude that a large diversity of absorber/emitter geometric configurations can account for the data, implying a more complex physical structure than the classical foreground dust screen assumption. However, most data points are bracketed by the foreground screen and a model where dust and emitters are uniformly mixed. When averaged over large ($gtrsim$100--200 pc) scales, the extinction becomes consistent with a dust screen, suggesting that other geometries tend to be restricted to more local scales. Moreover, the extinction in any region can be described by a combination of the foreground screen and the uniform mixture model with weights of 1/3 and 2/3 in the center ($lesssim$2 kpc), respectively, and 2/3 and 1/3 for the rest of the disk. This simple prescription significantly improves the accuracy of the dust extinction corrections and can be especially useful for pixel-based analyses of galaxies similar to M83.
In this work we analyze the physical properties of a sample of 153 star forming galaxies at z~0.84, selected by their H-alpha flux with a NB filter. B-band luminosities of the objects are higher than those of local star forming galaxies. Most of the galaxies are located in the blue cloud, though some objects are detected in the green valley and in the red sequence. After the extinction correction is applied virtually all these red galaxies move to the blue sequence, unveiling their dusty nature. A check on the extinction law reveals that the typical extinction law for local starbursts is well suited for our sample but with E(B-V)_stars=0.55 E(B-V)_gas. We compare star formation rates (SFR) measured with different tracers (H-alpha, UV and IR) finding that they agree within a factor of three after extinction correction. We find a correlation between the ratios SFR_FUV/SFR_H-alpha, SFR_IR/SFR_H-alpha and the EW(H-alpha) (i.e. weighted age) which accounts for part of the scatter. We obtain stellar mass estimations fitting templates to multi-wavelength photometry. The typical stellar mass of a galaxy within our sample is ~10^10 Msun. The SFR is correlated with stellar mass and the specific star formation rate (sSFR) decreases with it, indicating that massive galaxies are less affected by star formation processes than less massive ones. This result is consistent with the downsizing scenario. To quantify this downsizing we estimated the quenching mass M_Q for our sample at z~0.84, finding that it declines from M_Q ~10^12 Msun to M_Q ~8x10^10 Msun at the local Universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا