ترغب بنشر مسار تعليمي؟ اضغط هنا

Mass Deformed L-BLG Theory From ABJ Theory

120   0   0.0 ( 0 )
 نشر من قبل Kamal Lochan Panigrahi
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We construct mass deformed SU(N) L-BLG theory together with $U(M-N)_k$ Chern-Simons theory. This mass deformed L-BLG theory is a low energy world volume theory of a stack of $N$ number of M2-brane far away from $C^4/Z_k$ singularity. We carry out this by defining a special scaling limit of the fields of this theory and simultaneously sending the Chern-Simons level to infinity.



قيم البحث

اقرأ أيضاً

We generalize the operators of ABJM theory, given by Schur polynomials, in ABJ theory by computing the two point functions in the free field and at finite $(N_1,N_2)$ limits. These polynomials are then identified with the states of the dual gravity t heory. Further, we compute correlators among giant gravitons as well as between giant gravitons and ordinary gravitons through the corresponding correlators of ABJ(M) theory. Finally, we consider a particular non-trivial background produced by an operator with an $cal R$-charge of $O(N^2)$ and find, in presence of this background, due to the contribution of the non-planar corrections, the large $(N_1,N_2)$ expansion is replaced by $1/(N_1+M)$ and $1/(N_2+M)$ respectively.
We construct the one-dimensional topological sector of $mathcal N = 6$ ABJ(M) theory and study its relation with the mass-deformed partition function on $S^3$. Supersymmetric localization provides an exact representation of this partition function as a matrix integral, which interpolates between weak and strong coupling regimes. It has been proposed that correlation functions of dimension-one topological operators should be computed through suitable derivatives with respect to the masses, but a precise proof is still lacking. We present non-trivial evidence for this relation by computing the two-point function at twoloop, successfully matching the matrix model expansion at weak coupling and finite ranks. As a by-product we obtain the two-loop explicit expression for the central charge $c_T$ of ABJ(M) theory. Three- and four-point functions up to one-loop confirm the relation as well. Our result points towards the possibility to localize the one-dimensional topological sector of ABJ(M) and may also be useful in the bootstrap program for 3d SCFTs.
We investigate the effect of supersymmetry preserving mass deformation near the UV fixed point represented by the ${cal N}=6$ ABJM theory. In the context of the gauge/gravity duality, we analytically calculate the leading small mass effect on the ren ormalized entanglement entropy (REE) for the most general Lin-Lunin-Maldacena (LLM) geometries in the cases of the strip and disk shaped entangling surfaces. Our result shows that the properties of the REE in (2+1)-dimensions are consistent with those of the $c$-function in (1+1)-dimensions. We also discuss the validity of our computations in terms of the curvature behavior of the LLM geometry in the large $N$ limit and the relation between the correlation length and the mass parameter for a special LLM solution.
We investigate a mass deformation effect on the renormalized entanglement entropy (REE) near the UV fixed point in (2+1)-dimensional field theory. In the context of the gauge/gravity duality, we use the Lin-Lunin-Maldacena (LLM) geometries correspond ing to the vacua of the mass-deformed ABJM theory. We analytically compute the small mass effect for various droplet configurations and show in holographic point of view that the REE is monotonically decreasing, positive, and stationary at the UV fixed point. These properties of the REE in (2+1)-dimensions are consistent with the Zamolodchikov $c$-function proposed in (1+1)-dimensional conformal field theory.
Efficient and powerful approaches to the computation of correlation functions involving determinant, sub-determinant and permanent operators, as well as traces, have recently been developed in the setting of ${cal N}=4$ super Yang-Mills theory. In th is article we show that they can be extended to ABJM and ABJ theory. After making use of a novel identity which follows from character orthogonality, an integral representation of certain projection operators used to define Schur polynomials is given. This integral representation provides an effective description of the correlation functions of interest. The resulting effective descriptions have ${1over N}$ as the loop counting parameter, strongly suggesting their relevance for holography.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا