ﻻ يوجد ملخص باللغة العربية
The use of the umbral formalism allows a significant simplification of the derivation of sum rules involving products of special functions and polynomials. We rederive in this way known sum rules and addition theorems for Bessel functions. Furthermore, we obtain a set of new closed form sum rules involving various special polynomials and Bessel functions. The examples we consider are relevant for applications ranging from plasma physics to quantum optics.
In this note, we derive the closed-form expression for the summation of series $sum_{n=0}^{infty}nJ_n(x)partial J_n/partial n$, which is found in the calculation of entanglement entropy in 2-d bosonic free field, in terms of $Y_0$, $J_0$ and an integ
We solve the Cauchy problem for the $n$-dimensional wave equation using elementary properties of the Bessel functions.
We revisit two classical formulas for the Bessel function of the first kind, due to von Lommel and Weber-Schafheitlin, in a probabilistic setting. The von Lommel formula exhibits a family of solutions to the van Dantzig problem involving the generali
We review and further develop the theory of $E$-orbit functions. They are functions on the Euclidean space $E_n$ obtained from the multivariate exponential function by symmetrization by means of an even part $W_{e}$ of a Weyl group $W$, corresponding
The symbolic method is used to get explicit formulae for the products or powers of Bessel functions and for the relevant integrals.