ترغب بنشر مسار تعليمي؟ اضغط هنا

A Bayesian Approach to Locating the Red Giant Branch Tip Magnitude (Part II); Distances to the Satellites of M31

108   0   0.0 ( 0 )
 نشر من قبل Anthony Conn
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In `A Bayesian Approach to Locating the Red Giant Branch Tip Magnitude (PART I), a new technique was introduced for obtaining distances using the TRGB standard candle. Here we describe a useful complement to the technique with the potential to further reduce the uncertainty in our distance measurements by incorporating a matched-filter weighting scheme into the model likelihood calculations. In this scheme, stars are weighted according to their probability of being true object members. We then re-test our modified algorithm using random-realization artificial data to verify the validity of the generated posterior probability distributions (PPDs) and proceed to apply the algorithm to the satellite system of M31, culminating in a 3D view of the system. Further to the distributions thus obtained, we apply a satellite-specific prior on the satellite distances to weight the resulting distance posterior distributions, based on the halo density profile. Thus in a single publication, using a single method, a comprehensive coverage of the distances to the companion galaxies of M31 is presented, encompassing the dwarf spheroidals Andromedas I - III, V, IX-XXVII and XXX along with NGC147, NGC 185, M33 and M31 itself. Of these, the distances to Andromeda XXIV - XXVII and Andromeda XXX have never before been derived using the TRGB. Object distances are determined from high-resolution tip magnitude posterior distributions generated using the Markov Chain Monte Carlo (MCMC) technique and associated sampling of these distributions to take into account uncertainties in foreground extinction and the absolute magnitude of the TRGB as well as photometric errors. The distance PPDs obtained for each object both with, and without the aforementioned prior are made available to the reader in tabular form...



قيم البحث

اقرأ أيضاً

PHANGS-HST is an ultraviolet-optical imaging survey of 38 spiral galaxies within ~20 Mpc. Combined with the PHANGS-ALMA, PHANGS-MUSE surveys and other multiwavelength data, the dataset will provide an unprecedented look into the connections between y oung stars, HII regions, and cold molecular gas in these nearby star-forming galaxies. Accurate distances are needed to transform measured observables into physical parameters (e.g., brightness to luminosity, angular to physical sizes of molecular clouds, star clusters and associations). PHANGS-HST has obtained parallel ACS imaging of the galaxy halos in the F606W and F814W bands. Where possible, we use these parallel fields to derive tip of the red giant branch (TRGB) distances to these galaxies. In this paper, we present TRGB distances for 11 galaxies from ~4 to ~15 Mpc, based on the first year of PHANGS-HST observations. Five of these represent the first published TRGB distance measurements (IC 5332, NGC 2835, NGC 4298, NGC 4321, and NGC 4328), and eight of which are the best available distances to these targets. We also provide a compilation of distances for the 118 galaxies in the full PHANGS sample, which have been adopted for the first PHANGS-ALMA public data release.
The Carnegie-Chicago Hubble Program (CCHP) is undertaking a re-calibration of the extragalactic distance scale, using Type Ia supernovae that are tied to Tip of the Red Giant Branch (TRGB) distances to local galaxies. We present here deep Hubble Spac e Telescope (HST) ACS/WFC imaging of the resolved stellar populations in the metal-poor halos of the SN Ia host galaxies NGC 4424, NGC 4526, and NGC 4536. These three Virgo constellation galaxies are prime targets for calibrating the extragalactic distance scale given their relative proximity in the local Universe and their low line-of-sight reddenings. Anchoring the TRGB zero-point to the geometric distance to the Large Magellanic Cloud via detached eclipsing binaries, we measure extinction-corrected distance moduli of 31.00 +/- 0.03 (stat) +/- 0.06 (sys) mag, 30.98 +/- 0.03 (stat) +/- 0.06 (sys) mag, and 30.99 +/- 0.03 (stat) +/- 0.06 (sys) mag for NGC 4424, NGC 4526, and NGC 4536, respectively, or 15.8 +/- 0.2 (stat) +/- 0.4 (sys) Mpc, 15.7 +/- 0.2 (stat) +/- 0.4 (sys) Mpc, and 15.8 +/- 0.2 (stat) +/- 0.4 (sys) Mpc. For these three galaxies, the distances are the first based on the TRGB, and for NGC 4424 and NGC 4526, they are the highest precision distances published to date, each measured to 3%. Finally, we report good agreement between our TRGB distances and the available Cepheid distances for NGC 4424 and NGC 4536, demonstrating consistency between the distance scales currently derived from stars of Population I and II.
(Abridged) We have investigated the reliability of the widely used I-band Tip of the RGB relative distances for a sample of Local Group galaxies with complex Star Formation Histories (SFR) and Age Metallicity Relationships (AMR) namely the LMC, SMC a nd LGS3. The use of the K-band is also discussed. By employing theoretical stellar population synthesis techniques, we find that using actual determinations of SFR and AMR of the LMC and SMC, their RGB is populated by stars much younger (by 9 Gyr) than the Galactic globular cluster counterparts, on which the I-band (and K-band) TRGB absolute magnitude is calibrated. This age difference induces a bias in both the photometric metallicity estimates based on the comparison of RGB colours with globular cluster ones, and the TRGB distances. The extent of the distance bias is strongly dependent on the specific TRGB technique applied, and on the assumed I-band BC scale adopted; the correction to apply to the SMC-LMC distance modulus ranges from 0 up to +0.10 mag. LGS3 is an example of galaxy populated mainly by old stars, so that photometric metallicity and distance estimates using globular cluster calibrations are reliable. However, the relative distance moduli between Magellanic Clouds and LGS3 are affected by the population effects discussed for the LMC and SMC. The corrections to apply to the K-band TRGB distances are larger than the I-band case. Our results clearly show that the presence of a well developed RGB in the CMD of a stellar system with a complex SFR does not guarantee that it is populated by globular cluster-like red giants, and therefore the TRGB method for distance determination has to be applied with caution.
Owing to their simplicity and ease of application, seismic scaling relations are widely used to determine the properties of stars exhibiting solar-like oscillations, such as solar twins and red giants. So far, no seismic scaling relations for determi ning the ages of red giant stars have been developed. Such relations would be desirable for galactic archaeology, which uses stellar ages to map the history of the Milky Way. The ages of red giants must instead be estimated with reference to grids of theoretical stellar models, which can be computationally intensive. Here I present an exhaustive search for scaling age relations involving different combinations of observable quantities. The candidate scaling relations are calibrated and tested using more than 1,000 red giant stars whose ages were obtained via grid-based modeling. I report multiple high-quality scaling relations for red giant branch stars, the best of which are shown to be approximately as accurate as grid-based modeling with typical uncertainties of 15%. Additionally, I present new scaling mass and radius relations for red giants as well.
We have obtained accurate near-infrared photometry of the Tip of the Red Giant Branches in the Local Group galaxies Sculptor, NGC 6822, NGC 3109, IC 1613 and WLM. We have used the derived TRGB magnitudes together with the absolute magnitude calibrati on of the near-infrared TRGB magnitude of Valenti, Ferraro and Origlia to determine the distances of these five galaxies. The statis- tical errors in the distance moduli are typically 4%. The systematic uncertain- ties are dominated by the knowledge of the mean metallicities of the red giant branches, and are in the range of 5-8%. We observe a slight (2%) systematic difference between the distances derived from the J and K bands, respectively, which is within the 1 {sigma} errors of the distances. We compare the new distances derived in this paper with other recent distance determinations for our target galaxies and find excellent agreement. In particular, the near-infrared TRGB distances to the four dwarf irregular galaxies in the sample agree to better than 5% in each case with their Cepheid distances obtained from infrared photome- try, indicating that there is no appreciable systematic offset between these two fundamental techniques using old and young stellar populations, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا