ترغب بنشر مسار تعليمي؟ اضغط هنا

Investigating Supergiant Fast X-ray Transients with LOFT

562   0   0.0 ( 0 )
 نشر من قبل Patrizia Romano
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف P. Romano




اسأل ChatGPT حول البحث

Supergiant Fast X-ray Transients (SFXT) are a class of High-Mass X-ray Binaries whose optical counterparts are O or B supergiant stars, and whose X-ray outbursts are ~ 4 orders of magnitude brighter than the quiescent state. LOFT, the Large Observatory For X-ray Timing, with its coded mask Wide Field Monitor (WFM) and its 10 m^2 class collimated X-ray Large Area Detector (LAD), will be able to dramatically deepen the knowledge of this class of sources. It will provide simultaneous high S/N broad-band and time-resolved spectroscopy in several intensity states, and long term monitoring that will yield new determinations of orbital periods, as well as spin periods. We show the results of an extensive set of simulations performed using previous observational results of these sources obtained with Swift and XMM-Newton. The WFM will detect all SFXT flares within its field of view down to a 15-20 mCrab in 5ks. Our simulations describe the outbursts at several intensities (F_(2-10keV)=5.9x10^-9 to 5.5x10^-10 erg cm^-2 s^-1), the intermediate and most common state (10^-11 erg cm^-2 s^-1), and the low state (1.2x10^-12 to 5x10^-13 erg cm^-2 s^-1). We also considered large variations of N_H and the presence of emission lines, as observed by Swift and XMM-Newton.



قيم البحث

اقرأ أيضاً

We review the status of our knowledge on supergiant fast X-ray transients (SFXTs), a new hot topic in multi wavelength studies of binaries. We discuss the mechanisms believed to power these transients and then highlight the unique contribution Swift is giving to this field, and how new technology complements and sometimes changes the view of things.
488 - Lara Sidoli 2013
Supergiant Fast X-ray Transients are a class of Galactic High Mass X-ray Binaries with supergiant companions. Their extreme transient X-ray flaring activity was unveiled thanks to INTEGRAL/IBIS observations. The SFXTs dynamic range, with X-ray lumino sities from 1E32 erg/s to 1E37 erg/s, and long time intervals of low X-ray emission, are puzzling, given that both their donor star properties and their orbital and spin periodicities seem very similar to those displayed by massive binaries with persistent X-ray emission. Clumpy supergiant winds, accretion barriers, orbital geometries and wind anisotropies are often invoked to explain their behavior, but still several open issues remain. A review of the main recent observational results will be outlined, together with a summary of the new scenarios proposed to explain their bright flaring X-ray activity. The main result of a long Suzaku observation of the SFXT IGRJ16479-4514 with the shortest orbital period is also briefly summarized. The observation of the X-ray eclipse in this source allowed us to directly probe the supergiant wind density at the orbital separation, leading to the conclusion that it is too large to justify the low X-ray luminosity. A mechanism reducing the accretion rate onto the compact object is required.
374 - P. Romano 2016
Supergiant fast X-ray transients (SFXTs) are high mass X-ray binaries (HMXBs) hosting a neutron star and an OB supergiant companion. We examine the available Swift data, as well as other new or archival/serendipitous data, on three sources: IGR J1740 7-2808, 2XMM J185114.3-000004, and IGR J18175-2419, whose X-ray characteristics qualify them as candidate SFXT, in order to explore their properties and test whether they are consistent with an SFXT nature. As IGR J17407-2808 and 2XMM J185114.3-000004 triggered the Burst Alert Telescope on board Swift, the Swift data allow us to provide their first arcsecond localisations, leading to an unequivocal identification of the source CXOU J174042.0-280724 as the soft X-ray counterpart of IGR J17407-2808, as well as their first broadband spectra, which can be fit with models generally describing accreting neutron stars in HMXBs. While still lacking optical spectroscopy to assess the spectral type of the companion, we propose 2XMM J185114.3-000004 as a very strong SFXT candidate. The nature of IGR J17407-2808 remains, instead, more uncertain. Its broad band properties cannot exclude that the emission originates from either a HMXB (and in that case, a SFXT) or, more likely, a low mass X-ray binary. Finally, based on the deep non-detection in our XRT monitoring campaign and a careful reanalysis of the original Integral data in which the discovery of the source was first reported, we show that IGR J18175-2419 is likely a spurious detection.
90 - Lara Sidoli 2017
I present a brief up-to-date review of the current understanding of Supergiant Fast X-ray Transients, with an emphasis on the observational point of view. After more than a decade since their discovery, a remarkable progress has been made in getting the picture of their phenomenology at X-ray energies. However, a similar in-depth investigation of the properties of the supergiant companions is needed, but has started more recently. A multifrequency approach is the key to fully understand the physical mechanism driving the SFXT behaviour, still under debate.
176 - L. Sidoli , L. Ducci (3 2010
We report here on the most recent results obtained on a new class of High Mass X-ray Binaries, the Supergiant Fast X-ray Transients. Since October 2007, we have been performing a monitoring campaign with Swift of four SFXTs (IGRJ17544-2916, XTEJ1739- 302, IGRJ16479-4514 and the X-ray pulsar AXJ1841.0-0536) for about 1-2 ks, 2-3 times per week, allowing us to derive the previously unknown long term properties of this new class of sources (their duty cycles, spectral properties in outbursts and out-of-outbursts, temporal behaviour). We also report here on additional Swift observations of two SFXTs which are not part of the monitoring: IGRJ18483-0311 (observed with Swift/XRT during a whole orbital cycle) and SAXJ1818.6-1703 (observed for the first time simultaneously in the energy range 0.3-100 keV during a bright flare).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا