Recent contributions to kernel smoothing show that the performance of cross-validated bandwidth selectors improve significantly from indirectness. Indirect crossvalidation first estimates the classical cross-validated bandwidth from a more rough and difficult smoothing problem than the original one and then rescales this indirect bandwidth to become a bandwidth of the original problem. The motivation for this approach comes from the observation that classical crossvalidation tends to work better when the smoothing problem is difficult. In this paper we find that the performance of indirect crossvalidation improves theoretically and practically when the polynomial order of the indirect kernel increases, with the Gaussian kernel as limiting kernel when the polynomial order goes to infinity. These theoretical and practical results support the often proposed choice of the Gaussian kernel as indirect kernel. However, for do-validation our study shows a discrepancy between asymptotic theory and practical performance. As for indirect crossvalidation, in asymptotic theory the performance of indirect do-validation improves with increasing polynomial order of the used indirect kernel. But this theoretical improvements do not carry over to practice and the original do-validation still seems to be our preferred bandwidth selector. We also consider plug-in estimation and combinations of plug-in bandwidths and crossvalidated bandwidths. These latter bandwidths do not outperform the original do-validation estimator either.