ﻻ يوجد ملخص باللغة العربية
The observational study of star-formation laws is paramount to disentangling the physical processes at work on local and global scales in galaxies. To this aim we have expanded the sample of extreme starbursts, represented by local LIRGs and ULIRGs, with high-quality data obtained in the 1-0 line of HCN. The analysis of the new data shows that the star-formation efficiency of the dense molecular gas, derived from the FIR/HCN luminosity ratio, is a factor 3-4 higher in extreme starbursts compared to normal galaxies. We find a duality in the Kennicutt-Schmidt laws that is enhanced if we account for the different conversion factor for HCN (alpha_HCN) in extreme starbursts and correct for the unobscured star-formation rate in normal galaxies. We find that it is possible to fit the observed differences in the FIR/HCN ratios between normal galaxies and LIRGs/ULIRGs with a common constant star-formation rate per free-fall time (SFR_ff) if we assume that HCN densities are ~1-2 orders of magnitude higher in LIRGs/ULIRGs, and provided that SFR_ ff~0.005-0.01 and/or if alpha_HCN is a factor of a few lower than our favored values.
The Extreme starbursts in the local universe workshop was held at the Insituto de Astrofisica de Andalucia in Granada, Spain on 21-25 June 2010. Bearing in mind the advent of a new generation of facilities such as JWST, Herschel, ALMA, eVLA and eMerl
Two main modes of star formation are know to control the growth of galaxies: a relatively steady one in disk-like galaxies, defining a tight star formation rate (SFR)-stellar mass sequence, and a starburst mode in outliers to such a sequence which is
Lyman Break Analogs (LBAs), characterized by high far-UV luminosities and surface brightnesses as detected by GALEX, are intensely star-forming galaxies in the low-redshift universe ($zsim 0.2$), with star formation rates reaching up to 50 times that
We investigate the consequences of applying different star formation laws in the galaxy formation model GALFORM. Three broad star formation laws are implemented: the empirical relations of Kennicutt and Schmidt and Blitz & Rosolowsky and the theoreti
The observational study of star formation relations in galaxies is central to unraveling the physical processes at work on local and global scales. We wish to expand the sample of extreme starbursts, represented by local LIRGs and ULIRGs, with high q