ترغب بنشر مسار تعليمي؟ اضغط هنا

Is modularity the reason why recombination is so ubiquitous?

106   0   0.0 ( 0 )
 نشر من قبل Manuel Beltr\\'an del R\\'io
 تاريخ النشر 2012
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Homologous recombination is an important operator in the evolution of biological organisms. However, there is still no clear, generally accepted understanding of why it exists and under what circumstances it is useful. In this paper we consider its utility in the context of an infinite population haploid model with selection and homologous recombination. We define utility in terms of two metrics - the increase in frequency of fit genotypes, and the increase in average population fitness, relative to those associated with selection only. Explicitly, we exhaustively explore the eight-dimensional parameter space of a two-locus two-allele system, showing, as a function of the landscape and the initial population, that recombination is beneficial in terms of our metrics in two distinct regimes: a landscape independent regime - the search regime - where recombination aids in the search for a fit genotype that is absent or at low frequency in the population; and the modular regime, associated with quasi-additive fitness landscapes with low epistasis, where recombination allows for the juxtaposition of fit modules or Building Blocks. Thus, we conclude that the ubiquity and utility of recombination is intimately associated with the existence of modularity in biological fitness landscapes.



قيم البحث

اقرأ أيضاً

Order flow in equity markets is remarkably persistent in the sense that order signs (to buy or sell) are positively autocorrelated out to time lags of tens of thousands of orders, corresponding to many days. Two possible explanations are herding, cor responding to positive correlation in the behavior of different investors, or order splitting, corresponding to positive autocorrelation in the behavior of single investors. We investigate this using order flow data from the London Stock Exchange for which we have membership identifiers. By formulating models for herding and order splitting, as well as models for brokerage choice, we are able to overcome the distortion introduced by brokerage. On timescales of less than a few hours the persistence of order flow is overwhelmingly due to splitting rather than herding. We also study the properties of brokerage order flow and show that it is remarkably consistent both cross-sectionally and longitudinally.
274 - Shi Zhou 2010
During the last three decades the Internet has experienced fascinating evolution, both exponential growth in traffic and rapid expansion in topology. The size of the Internet becomes enormous, yet the network is very `small in the sense that it is ex tremely efficient to route data packets across the global Internet. This paper provides a brief review on three fundamental properties of the Internet topology at the autonomous systems (AS) level. Firstly the Internet has a power-law degree distribution, which means the majority of nodes on the Internet AS graph have small numbers of links, whereas a few nodes have very large numbers of links. Secondly the Internet exhibits a property called disassortative mixing, which means poorly-connected nodes tend to link with well-connected nodes, and vice versa. Thirdly the best-connected nodes, or the rich nodes, are tightly interconnected with each other forming a rich-club. We explain that it is these structural properties that make the global Internet so small.
Ferroelectrics are attractive candidate materials for environmentally friendly solid state refrigeration free of greenhouse gases. Their thermal response upon variations of external electric fields is largest in the vicinity of their phase transition s, which may occur near room temperature. The magnitude of the effect, however, is too small for useful cooling applications even when they are driven close to dielectric breakdown. Insight from microscopic theory is therefore needed to characterize materials and provide guiding principles to search for new ones with enhanced electrocaloric performance. Here, we derive from well-known microscopic models of ferroelectricity meaningful figures of merit which provide insight into the relation between the strength of the effect and the characteristic interactions of ferroelectrics such as dipole forces. We find that the long range nature of these interactions results in a small effect. A strategy is proposed to make it larger by shortening the correlation lengths of fluctuations of polarization.
We present the results of high resolution spectra of seven stars in the field of NGC 2482, an open star cluster of age 447 Myr. We confirm the previously published values of the radial velocity and metallicity of one giant star. This gives us confide nce that another giant star is a bona fide cluster member, and that three stars significantly above the main sequence in a color-magnitude diagram are not members, on the basis of discordant radial velocities. Another star ~1.7 mag above the main sequence may or may not be a member. Its [Fe/H] value is ~0.1 dex more positive than two giant stars studied, and its radial velocity is 3-4 km/s less than that of the two giant stars, which is a significant difference if the velocity dispersion of the cluster is less than +/-1 km/s. To a large extent the width of the main sequence seems to be due to the presence of foreground and background stars in the same general direction, stars that masquerade as main sequence stars in the cluster.
120 - Hidenori Fukaya 2018
Gravity is difficult to quantize. This is a well-known fact but its reason is given simply by non-renormalizability of the Newton constant and little is discussed why among many quantum gauge theories, gravity is special. In this essay we try to trea t the gravity as one of many gauge theories, and discuss how it is special and why it is difficult to quantize.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا