ترغب بنشر مسار تعليمي؟ اضغط هنا

Staring at 4U 1909+07 with Suzaku

318   0   0.0 ( 0 )
 نشر من قبل Felix Fuerst
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an analysis of the neutron star High Mass X-ray Binary (HMXB) 4U 1909+07 mainly based on Suzaku data. We extend the pulse period evolution, which behaves in a random-walk like manner, indicative of direct wind accretion. Studying the spectral properties of 4U 1909+07 between 0.5 to 90 keV we find that a power-law with an exponential cutoff can describe the data well, when additionally allowing for a blackbody or a partially covering absorber at low energies. We find no evidence for a cyclotron resonant scattering feature (CRSF), a feature seen in many other neutron star HMXBs sources. By performing pulse phase resolved spectroscopy we investigate the origin of the strong energy dependence of the pulse profile, which evolves from a broad two-peak profile at low energies to a profile with a single, narrow peak at energies above 20 keV. Our data show that it is very likely that a higher folding energy in the high energy peak is responsible for this behavior. This in turn leads to the assumption that we observe the two magnetic poles and their respective accretion columns at different phases, and that these accretions column have slightly different physical conditions.



قيم البحث

اقرأ أيضاً

270 - F. Fuerst 2010
We present the first detailed spectral and timing analysis of the High Mass X-ray Binary (HMXB) 4U 1909+07 with INTEGRAL and RXTE. 4U 1909+07 is detected in the ISGRI 20-40 keV energy band with an average countrate of 2.6 cps. The pulse period of ~60 4 sec is not stable, but changing erratically on timescales of years. The pulse profile is strongly energy dependent: it shows a double peaked structure at low energies, the secondary pulse decreases rapidly with increasing energy and above 20 keV only the primary pulse is visible. This evolution is consistent between PCA, HEXTE, and ISGRI. The phase averaged spectrum can be well described by the sum of a photoabsorbed power law with a cutoff at high energies and a blackbody component. To investigate the pulse profile, we performed phase resolved spectral analysis. We find that the changing spectrum can be best described with a variation of the folding energy. We rule out a correlation between the black body component and the continuum variation and discuss possible accretion geometries.
91 - F. Fuerst 2009
We present the first detailed spectral and timing analysis of the High Mass X-ray Binary (HMXB) 4U 1909+07 with INTEGRAL and RXTE. 4U 1909+07 is detected with an average of 2.4cps in ISGRI, but shows flares up to ~50cps. The system shows a pulse peri od of 605s, but we found that the period changes erratically around this value. The pulse profile is extremely energy dependent: while it shows a double peaked structure at low energies, the secondary pulse decreases rapidly with increasing energy and above 20keV only the primary pulse is visible. This evolution is consistent between PCA, HEXTE and ISGRI. We find that the phase averaged spectrum can be well fitted with a photoabsorbed power law with a cutoff at high energies and a blackbody component. To investigate the peculiar pulse profile, we performed phase resolved spectral analysis. We find that a change in the cutoff energy is required to fit the changing spectrum of the different pulse phases.
We present timing and broad-band spectral studies of the high mass X-ray binary pulsar 4U 1909+07 using data from Suzaku observation during 2010 November 2-3. The pulse period of the pulsar is estimated to be 604.11+/-0.14 s. Pulsations are seen in t he X-ray light curve up to ~70 keV. The pulse profile is found to be strongly energy-dependent: a complex, multi-peaked structure at low energy that becomes a simple single peak at higher energy. We found that the 1-70 keV pulse averaged continuum can be fitted by the sum of a black body and a partial covering Negative and Positive power-law with EXponential cutoff (NPEX) model. A weak iron fluorescence emission line at 6.4 keV was detected in the spectrum. An absorption like feature at ~44 keV was clearly seen in the residue of the spectral fitting, independent of the continuum model adopted. To check the possible presence of a CRSF in the spectrum, we normalized the pulsar spectrum with the spectrum of the Crab Nebula. The resulting Crab ratio also showed a clear dip centered at ~44 keV. We performed statistical tests on the residue of the spectral fitting and also on the Crab spectral ratio to determine the significance of the absorption like feature and identified it as a CRSF of the pulsar. We estimated the corresponding surface magnetic field of the pulsar to be 3.8 x 10^12 Gauss.
We present an analysis of X-ray spectra of the high mass X-ray binary 4U 0115+634 as observed with Suzaku and RXTE in 2011 July, during the fading phase of a giant X-ray outburst. We used a continuum model consisting of an absorbed cutoff power-law a nd an ad-hoc Gaussian emission feature centered around 8.5 keV, which we discuss to be due to cyclotron emission. Our results are consistent with a fundamental cyclotron absorption line centered at ${sim}10.2$ keV for all observed flux ranges. At the same time we rule out significant influence of the 8.5 kev Gaussian on the CRSF parameters, which are not consistent with the cyclotron line energies and depths of previously reported flux-dependent descriptions. We also show that some continuum models can lead to artificial line-like residuals in the analyzed spectra, which are then misinterpreted as unphysically strong cyclotron lines. Specifically, our results do not support the existence of a previously claimed additional cyclotron feature at ${sim}15$ keV. Apart from these features, we find for the first time evidence for a He-like Fe XXV emission line at ${sim}6.7$ keV and weak H-like Fe XXVI emission close to ${sim}7.0$ keV.
The dipping low-mass X-ray binary 4U 1915-05 was observed by Suzaku on 2007 November 8 for a net exposure of 39 ksec. It was detected by the XIS with a 0.8-10 keV signal rate of 9.84+-0.01 cts/s per camera, and HXD-PIN with a 12-45 keV signal rate of 0.29+/-0.01 cts/s. After removing the periodic dips and an X-ray burst, the 0.8 - 45 keV continuum was successfully described by an optically thick disk emission with an inner-disk temperature ~ 0.7 keV and a neutron-star blackbody emission with a temperature ~ 1.3 keV, on condition that the blackbody component, or possibly the disk emission too, is significantly Comptonized. This successful modeling is consistent with 4U 1915-05 being in a high-soft state in this observation, and implies that its broadband spectrum can be interpreted in the same scheme as for many non-dipping Low-mass X-ray binaries in the soft state. Its bolometric luminosity (~ 0.02 times the Eddington limit) is relatively low for the soft state, but within a tolerance, if considering the distance and inclination uncertainties. As a high-inclination binary, this source exhibited stronger Comptonization effect, with a larger Comptonizing y-parameter, compared to low and medium inclination binaries. This suggests that the Comptonizing coronae of these objects in the soft state is in an oblate (rather than spherical) shape, extending along the accretion disk plane, because the y-parameter would not depend on the inclination if the corona were spherical.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا