We present two new families of Wilson loop operators in N= 6 supersymmetric Chern-Simons theory. The first one is defined for an arbitrary contour on the three dimensional space and it resembles the Zarembos construction in N=4 SYM. The second one involves arbitrary curves on the two dimensional sphere. In both cases one can add certain scalar and fermionic couplings to the Wilson loop so it preserves at least two supercharges. Some previously known loops, notably the 1/2 BPS circle, belong to this class, but we point out more special cases which were not known before. They could provide further tests of the gauge/gravity correspondence in the ABJ(M) case and interesting observables, exactly computable by localization