ترغب بنشر مسار تعليمي؟ اضغط هنا

Forecasting the Maxima of Solar Cycle 24 with Coronal Fe XIV Emission

146   0   0.0 ( 0 )
 نشر من قبل Richard Altrock
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The onset of the Rush to the Poles of polar-crown prominences and their associated coronal emission is a harbinger of solar maximum. Altrock (Solar Phys. 216, 343, 2003) showed that the Rush was well-observed at 1.15 Ro in the Fe XIV corona at the Sacramento Peak site of the National Solar Observatory prior to the maxima of Cycles 21 to 23. The data show that solar maximum in those cycles occurred when the center line of the Rush reached a critical latitude of 76 +- 2{deg}. Furthermore, in the previous three cycles solar maximum occurred when the highest number of Fe XIV emission features per day (averaged over 365 days and both hemispheres) first reached latitudes 20 +- 1.7{deg}. Cycle 24 displays an intermittent Rush that is only well-defined in the northern hemisphere. In 2009 an initial slope of 4.6{deg}/yr was found in the north, compared to an average of 9.4 +- 1.7 {deg}/yr in the previous cycles. An early fit to the Rush would have reached 76{deg} at 2014.6. However, in 2010 the slope increased to 7.5{deg}/yr (an increase did not occur in the previous three cycles). Extending that rate to 76 +- 2{deg} indicates that the solar maximum in the northern hemisphere already occurred at 2011.6 +- 0.3. In the southern hemisphere the Rush to the Poles, if it exists, is very poorly defined. A linear fit to several maxima would reach 76{deg} in the south at 2014.2. In 1999, persistent Fe XIV coronal emission known as the extended solar cycle appeared near 70{deg} in the north and began migrating towards the equator at a rate 40% slower than the previous two solar cycles. However, in 2009 and 2010 an acceleration occurred. Currently the greatest number of emission features is at 21{deg} in the North and 24{deg}in the South. This indicates that solar maximum is occurring now in the North but not yet in the South.



قيم البحث

اقرأ أيضاً

The paper presents results of a search for helioseismic events (sunquakes) produced by M-X class solar flares during Solar Cycle 24. The search is performed by analyzing photospheric Dopplergrams from Helioseismic Magnetic Imager (HMI). Among the tot al number of 500 M-X class flares, 94 helioseismic events were detected. Our analysis has shown that many strong sunquakes were produced by solar flares of low M class (M1-M5), while in some powerful X-class flares helioseismic waves were not observed or were weak. Our study also revealed that only several active regions were characterized by the most efficient generation of helioseismic waves during flares. We found that the sunquake power correlates with the maximum value of the soft X-ray flux time derivative better than with the X-ray class, indicating that the sunquake mechanism is associated with high-energy particles. We also show that the seismically active flares are more impulsive than the flares without helioseismic perturbations. We present a new catalog of helioseismic solar flares, which opens opportunities for performing statistical studies to better understand the physics of sunquakes as well as the flare energy release and transport.
Similar to the Sun, other stars shed mass and magnetic flux via ubiquitous quasi-steady wind and episodic stellar coronal mass ejections (CMEs). We investigate the mass loss rate via solar wind and CMEs as a function of solar magnetic variability rep resented in terms of sunspot number and solar X-ray background luminosity. We estimate the contribution of CMEs to the total solar wind mass flux in the ecliptic and beyond, and its variation over different phases of the solar activity cycles. The study exploits the number of sunspots observed, coronagraphic observations of CMEs near the Sun by SOHO/LASCO, in situ observations of the solar wind at 1 AU by WIND, and GOES X-ray flux during solar cycle 23 and 24. We note that the X-ray background luminosity, occurrence rate of CMEs and ICMEs, solar wind mass flux, and associated mass loss rates from the Sun do not decrease as strongly as the sunspot number from the maximum of solar cycle 23 to the next maximum. Our study confirms a true physical increase in CME activity relative to the sunspot number in cycle 24. We show that the CME occurrence rate and associated mass loss rate can be better predicted by X-ray background luminosity than the sunspot number. The solar wind mass loss rate which is an order of magnitude more than the CME mass loss rate shows no obvious dependency on cyclic variation in sunspot number and solar X-ray background luminosity. These results have implications to the study of solar-type stars.
In this study we present a statistical analysis of 53 fast Earth-directed halo CMEs observed by the SOHO/LASCO instrument during the period Jan. 2009-Sep. 2015, and we use this CME sample to test the capabilities of a Sun-to-Earth prediction scheme f or CME geoeffectiveness. First, we investigate the CME association with other solar activity features by means of multi-instrument observations of the solar magnetic and plasma properties. Second, using coronagraphic images to derive the CME kinematical properties at 0.1 AU, we propagate the events to 1 AU by means of the WSA-ENLIL+Cone model. Simulation results at Earth are compared with in-situ observations at L1. By applying the pressure balance condition at the magnetopause and a solar wind-Kp index coupling function, we estimate the expected magnetospheric compression and geomagnetic activity level, and compare them with global data records. The analysis indicates that 82% of the CMEs arrived at Earth in the next 4 days. Almost the totality of them compressed the magnetopause below geosynchronous orbits and triggered a geomagnetic storm. Complex sunspot-rich active regions associated with energetic flares result the most favourable configurations from which geoeffective CMEs originate. The analysis of related SEP events shows that 74% of the CMEs associated with major SEPs were geoeffective. Moreover, the SEP production is enhanced in the case of fast and interacting CMEs. In this work we present a first attempt at applying a Sun-to-Earth geoeffectiveness prediction scheme - based on 3D simulations and solar wind-geomagnetic activity coupling functions - to a statistical set of potentially geoeffective halo CMEs. The results of the prediction scheme are in good agreement with geomagnetic activity data records, although further studies performing a fine-tuning of such scheme are needed.
Solar activity, in particular coronal mass ejections (CMEs), are often accompanied by bursts of radiation at metre wavelengths. Some of these bursts have a long duration and extend over a wide frequency band, namely, type IV radio bursts. However, th e association of type IV bursts with coronal mass ejections is still not well understood. In this article, we perform the first statistical study of type IV solar radio bursts in the solar cycle 24. Our study includes a total of 446 type IV radio bursts that occurred during this cycle. Our results show that a clear majority, $sim 81 %$ of type IV bursts, were accompanied by CMEs, based on a temporal association with white-light CME observations. However, we found that only $sim 2.2 %$ of the CMEs are accompanied by type IV radio bursts. We categorised the type IV bursts as moving or stationary based on their spectral characteristics and found that only $sim 18 %$ of the total type IV bursts in this study were moving type IV bursts. Our study suggests that type IV bursts can occur with both `Fast ($geq 500$ km/s) and `Slow ($< 500$ km/s), and also both `Wide ($geq 60^{circ}$) and `Narrow ($< 60^{circ}$) CMEs. However, the moving type IV bursts in our study were mostly associated with `Fast and `Wide CMEs ($sim 52 %$), similar to type II radio bursts. Contrary to type II bursts, stationary type IV bursts have a more uniform association with all CME types.
In this article, we report an evidence of very high and statistically significant relationship between hemispheric asymmetry in solar coronal rotation rate and solar activity. Our approach is based on cross correlation of hemispheric asymmetry index (AI) in rotation rate with annual solar activity indicators. To obtain hemispheric asymmetry in solar rotation rate, we use solar full disc (SFD) images at 30.4 nm, 19.5 nm, and 28.4 nm wavelengths for 24th Solar Cycle i.e., for the period from 2008 to 2018, as recorded by the Solar Terrestrial Relations Observatory (STEREO) space mission. Our analysis shows that hemispheric asymmetry in rotation rate is high during the solar maxima from 2011 to 2014. On the other hand, hemispheric asymmetry drops gradually on both sides (i.e., from 2008 to 2011 and from 2014 to 2018). The results show that asymmetry index (AI) leads sunspot numbers by ~1.56 years. This gives a clear indication that hemispheric asymmetry triggers the formation of sunspots working together with the differential rotation of the Sun.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا