ترغب بنشر مسار تعليمي؟ اضغط هنا

On Local Bifurcations in Neural Field Models with Transmission Delays

169   0   0.0 ( 0 )
 نشر من قبل Yuri Kuznetsov
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Neural field models with transmission delay may be cast as abstract delay differential equations (DDE). The theory of dual semigroups (also called sun-star calculus) provides a natural framework for the analysis of a broad class of delay equations, among which DDE. In particular, it may be used advantageously for the investigation of stability and bifurcation of steady states. After introducing the neural field model in its basic functional analytic setting and discussing its spectral properties, we elaborate extensively an example and derive a characteristic equation. Under certain conditions the associated equilibrium may destabilise in a Hopf bifurcation. Furthermore, two Hopf curves may intersect in a double Hopf point in a two-dimensional parameter space. We provide general formulas for the corresponding critical normal form coefficients, evaluate these numerically and interpret the results.



قيم البحث

اقرأ أيضاً

In this paper, we study the existence and the property of the Hopf bifurcation in the two-strategy replicator dynamics with distributed delays. In evolutionary games, we assume that a strategy would take an uncertain time delay to have a consequence on the fitness (or utility) of the players. As the mean delay increases, a change in the stability of the equilibrium (Hopf bifurcation) may occur at which a periodic oscillation appears. We consider Dirac, uniform, Gamma, and discrete delay distributions, and we use the Poincare- Lindstedts perturbation method to analyze the Hopf bifurcation. Our theoretical results are corroborated with numerical simulations.
119 - A.D. Morozov 2014
For Hamitonian systems with 3/2 degrees of freedom close to nonlinear integrable and for symplectic maps of the cylinder, bifurcations in degenerate resonance zones are discussed.
This article studies routes to chaos occurring within a resonance wedge for a 3-parametric family of differential equations acting on a 3-sphere. Our starting point is an autonomous vector field whose flow exhibits a weakly attracting heteroclinic ne twork made by two 1-dimensional connections and a 2-dimensional separatrix between two equilibria with different Morse indices. After changing the parameters, while keeping the 1-dimensional connections unaltered, we concentrate our study in the case where the 2-dimensional invariant manifolds of the equilibria do not intersect. We derive the first return map near the ghost of the attractor and we reduce the analysis of the system to a 2-dimensional map on the cylinder. Complex dynamical features arise from a discrete-time Bogdanov-Takens singularity, which may be seen as the organizing center by which one can obtain infinitely many attracting tori, strange attractors, infinitely many sinks and non-trivial contracting wandering domains. These dynamical phenomena occur within a structure that we call resonance wedge. As an application, we may see the classical Arnold tongue as a projection of a resonance wedge. The results are general, extend to other contexts and lead to a fine-tuning of the theory.
This paper provides necessary conditions of optimality for optimal control problems with time delays in both state and control variables. Differen
We consider smooth systems limiting as $epsilon to 0$ to piecewise-smooth (PWS) systems with a boundary-focus (BF) bifurcation. After deriving a suitable local normal form, we study the dynamics for the smooth system with $0 < epsilon ll 1$ using a c ombination of geometric singular perturbation theory and blow-up. We show that the type of BF bifurcation in the PWS system determines the bifurcation structure for the smooth system within an $epsilon-$dependent domain which shrinks to zero as $epsilon to 0$, identifying a supercritical Andronov-Hopf bifurcation in one case, and a supercritical Bogdanov-Takens bifurcation in two other cases. We also show that PWS cycles associated with BF bifurcations persist as relaxation cycles in the smooth system, and prove existence of a family of stable limit cycles which connects the relaxation cycles to regular cycles within the $epsilon-$dependent domain described above. Our results are applied to models for Gause predator-prey interaction and mechanical oscillation subject to friction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا