Let m and n be any integers with n>m>=2. Using just the entropy function it is possible to define a partial order on S_mn (the symmetric group on mn letters) modulo a subgroup isomorphic to S_m x S_n. We explore this partial order in the case m=2, n=3, where thanks to the outer automorphism the quotient space is actually isomorphic to a parabolic quotient of S_6. Furthermore we show that in this case it has a fairly simple algebraic description in terms of elements of the group ring.