ﻻ يوجد ملخص باللغة العربية
Using data on the Berlin public transport network, the present study extends previous observations of fractality within public transport routes by showing that also the distribution of inter-station distances along routes displays non-trivial power law behaviour. This indicates that the routes may in part also be described as Levy-flights. The latter property may result from the fact that the routes are planned to adapt to fluctuating demand densities throughout the served area. We also relate this to optimization properties of Levy flights.
Random walks constitute a fundamental mechanism for many dynamics taking place on complex networks. Besides, as a more realistic description of our society, multiplex networks have been receiving a growing interest, as well as the dynamical processes
Properties of random and fluctuating systems are often studied through the use of Gaussian distributions. However, in a number of situations, rare events have drastic consequences, which can not be explained by Gaussian statistics. Considerable effor
We consider one-dimensional discrete-time random walks (RWs) with arbitrary symmetric and continuous jump distributions $f(eta)$, including the case of Levy flights. We study the expected maximum ${mathbb E}[M_n]$ of bridge RWs, i.e., RWs starting an
We study the connective constants of weighted self-avoiding walks (SAWs) on infinite graphs and groups. The main focus is upon weighted SAWs on finitely generated, virtually indicable groups. Such groups possess so-called height functions, and this p
Virtually all real-world networks are dynamical entities. In social networks, the propensity of nodes to engage in social interactions (activity) and their chances to be selected by active nodes (attractiveness) are heterogeneously distributed. Here,