ﻻ يوجد ملخص باللغة العربية
We demonstrate the analogue of electromagnetically induced transparency in a room temperature cavity optomechanics setup formed by a thin semitransparent membrane within a Fabry-Perot cavity. Due to destructive interference, a weak probe field is completely reflected by the cavity when the pump beam is resonant with the motional red sideband of the cavity. Under this condition we infer a significant slowing down of light of hundreds of microseconds, which is easily tuned by shifting the membrane along the cavity axis. We also observe the associated phenomenon of electromagnetically induced amplification which occurs due to constructive interference when the pump is resonant with the blue sideband.
Coherent interaction of laser radiation with multilevel atoms and molecules can lead to quantum interference in the electronic excitation pathways. A prominent example observed in atomic three-level-systems is the phenomenon of electromagnetically in
In this work we theoretically investigate a hybrid system of two optomechanically coupled resonators, which exhibits induced transparency. This is realized by coupling an optical ring resonator to a toroid. In the semiclassical analyses, the system d
Diamond cavity optomechanical devices hold great promise for quantum technology based on coherent coupling between photons, phonons and spins. These devices benefit from the exceptional physical properties of diamond, including its low mechanical dis
In contrast to the optomechanically induced transparency (OMIT) defined conventionally, the inverse OMIT behaves as coherent absorption of the input lights in the optomechanical systems. We characterize a feasible inverse OMIT in a multi-channel fash
A tunable double optomechanically induced transparency (OMIT) with a squeezed field is investigated in a system consisting of an optomechanical cavity coupled to a charged nanomechanical resonator via Coulomb interaction. Such a double OMIT can be ac