ترغب بنشر مسار تعليمي؟ اضغط هنا

Long-term photometric and spectroscopic observations of the near-contact binary KR Cygni

132   0   0.0 ( 0 )
 نشر من قبل Omur Cakirli Or
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the multi-color, five-year light curves and the first radial velocities of the near-contact binary system KR Cyg. We derived the masses of the components as 2.88$pm$0.20 M$_{odot}$ and 1.26$pm$0.07 M$_{odot}$ and the radii as 2.59$pm$0.06 R$_{odot}$ and 1.80$pm$0.04 R$_{odot}$. Analyses of the UBVR light curves and the radial velocities indicate that none of the components exactly fill their corresponding Roche lobes. We have calculated the distance to the system of KR Cyg as {411$pm$12} pc using the observed apparent UBV magnitudes and the bolometric corrections for the component stars. We also searched for the empirical determination of albedo and effective temperature of the cooler, less massive star of KR Cyg, and of two similar near contact binaries AK CMi, and DO Cas. The residuals between the observed and computed fluxes are attributed to the effect of mutual illumination which heats the surface layers of the illuminated star and does vary not only its bolometric albedo but also its limb-darkening coefficient and gravity-brightening exponent. The analysis of the light curves shows that the effective albedos are generally smaller than that expected from an envelope of convective star, being mostly departed from the theoretical value at the B passband. As the reflected light diminishes the effective temperature and, therefore, the luminosity of the irradiated star increase. The observed bluer U-B colors during primary minimum are attributed to the effects of mutual irradiation and multiple scattering processes which may alter several characteristics of these systems.



قيم البحث

اقرأ أيضاً

This paper presents a photometric and spectroscopic study of the short-period binary star Cl*~Melotte~111~AV~1224. Measurements in the $B$, $V$, and $R$ passbands obtained during three observing runs between 2014 and 2017 and medium-resolution sp ectra secured in 2014, are analyzed together with public data from the SuperWASP and LAMOST projects. Our light curves show marked asymmetry with a variable OConnell effect. The SuperWASP photometry is used to derive a mean binary period of 0.345225 days. The analysis of the $(O-C)$ diagram reveals that the orbital period is decreasing at a rate of $dP/dt = -3.87 times 10^{-6}$ days yr$^{-1}$, which may be caused by mass transfer from the more-massive component to the less-massive one. The system is found to be a single-lined spectroscopic binary with a systemic velocity, $gamma = 1 pm 3$ Km s$^{-1}$, and a semi-amplitude, K$_{1}$ = 21 $pm$ 5 Km s$^{-1}$. The spectral classification and the effective temperature of the primary component are estimated to be K0V $pm$ 1 and $5200 pm 150$ K, respectively. The photometric and spectroscopic solutions reveal that Cl*~Melotte~111~AV~1224 is a low-mass ratio ($q=m_{2}/m_{1} sim 0.11$), low-inclination ($sim ~ 38^{circ}$) near-contact system. The masses, radii and luminosity for the primary and secondary are estimated to be $1.02 pm 0.06, M_odot$, $1.23 pm 0.05, R_odot $, $1.01 pm 0.06, L_odot$ and $0.11 pm 0.08, M_odot$, $0.45 pm 0.05, R_odot$, $0.10 pm 0.06, L_odot$, respectively. The marginal contact, together with the period decrease, suggests that this binary system may be at a key evolutionary stage, as predicted by the theory of thermal relaxation oscillations.
We present the results of the study of the contact binary system BO CVn. We have obtained physical parameters of the components based on combined analysis of new, multi-color light curves and spectroscopic mass ratio. This is the first time the latte r has been determined for this object. We derived the contact configuration for the system with a very high filling factor of about 88 percent. We were able to reproduce the observed light curve, namely the flat bottom of the secondary minimum, only if a third light has been added into the list of free parameters. The resulting third light contribution is significant, about 20-24 percent, while the absolute parameters of components are: M1=1.16, M2=0.39, R1=1.62 and R2=1.00 (in solar units). The O-C diagram shows an upward parabola which, under the conservative mass transfer assumption, would correspond to a mass transfer rate of dM/dt = 6.3 times 10-8Modot/yr, matter being transferred from the less massive component to the more massive one. No cyclic, short-period variations have been found in the O-C diagram (but longer-term variations remain a possibility)
129 - A. B. Ren , X. B. Zhang , J. N. Fu 2017
Time-series, multi-color photometry and high-resolution spectra of the short period eclipsing binary V Tri were obtained by observations. The completely covered light and radial velocity curves of the binary system are presented. All times of light m inima derived from both photoelectric and CCD photometry were used to calculate the orbital period and new ephemerides of the eclipsing system. The analysis of $O-C$ diagram reveals that the orbital period is $0.58520481 days$, decreasing at a rate of $dP/dt=-7.80times10^{-8} d yr^{-1} $. The mass transfer between the two components and the light time-travel effect due to a third body could be used to explain the period decrease. However, a semidetached configuration with the less-mass component filling and the primary nearly filling each of their Roche lobes was derived from the synthesis of the light and radial velocity curves by using the 2015 version of the Wilson-Devinney code. We consider the period decrease to be the nonconservative mass transfer from the secondary component to the primary and the mass loss of the system, which was thought to be an EB type while it should be an EA type (semi-detached Algol-type) from our study. The masses, radii and luminosities of the primary and secondary are $1.60pm0.07 M_odot$, $1.64pm0.02 R_odot$, $14.14pm0.73 L_odot$ and $0.74pm0.02 M_odot$, $1.23pm0.02 R_odot$, $1.65pm0.05 L_odot$, respectively.
We present the results of a spectroscopic monitoring program of the Pleiades region aimed at completing the census of spectroscopic binaries in the cluster, extending it to longer periods than previously reachable. We gathered 6104 spectra of 377 sta rs between 1981 and 2021, and merged our radial velocities with 1151 measurements from an independent survey by others started three years earlier. With the combined data spanning more than 43 yr we have determined orbits for some 30 new binary and multiple systems, more than doubling the number previously known in the Pleiades. The longest period is 36.5 yr. A dozen additional objects display long-term trends in their velocities, implying even longer periods. We examine the collection of orbital elements for cluster members, and find that the shape of the incompleteness-corrected distribution of periods (up to $10^4$ days) is similar to that of solar-type binaries in the field, while that of the eccentricities is different. The mass-ratio distribution is consistent with being flat. The binary frequency in the Pleiades for periods up to $10^4$ days is $25 pm 3$%, after corrections for undetected binaries, which is nearly double that of the field up to the same period. The total binary frequency including known astrometric binaries is at least 57%. We estimate the internal radial velocity dispersion in the cluster to be $0.48 pm 0.04$ km s$^{-1}$. We revisit the determination of the tidal circularization period, and confirm its value to be $7.2 pm 1.0$ days, with an improved precision compared to an earlier estimate.
We present results from long-term optical photometric observations of the Pre-Main Sequence (PMS) stars, located in the star formation region around the bright nebula NGC 7129. Using the long-term light curves and spectroscopic data, we tried to clas sify the PMS objects in the field and to define the reasons for the observed brightness variations. Our main goal is to explore the known PMS stars and discover new, young, variable stars. The new variable PMS star 2MASS J21403576+6635000 exhibits unusual brightness variations for very short time intervals (few minutes or hours) with comparatively large amplitudes (Delta I = 2.65 mag).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا