ﻻ يوجد ملخص باللغة العربية
FAZIA is designed for detailed studies of the isospin degree of freedom, extending to the limits the isotopic identification of charged products from nuclear collisions when using silicon detectors and CsI(Tl) scintillators. We show that the FAZIA telescopes give isotopic identification up to Z$sim$25 with a $Delta$E-E technique. Digital Pulse Shape Analysis makes possible elemental identification up to Z=55 and isotopic identification for Z=1-10 when using the response of a single silicon detector. The project is now in the phase of building a demonstrator comprising about 200 telescopes.
The Neutron Activation Analysis (NAA) plays an exceptional role in the modern nuclear engineering, especially in detection of hazardous substances. However, in the aquatic environment, there are still many problems to be solved for effective usage of
Other the past few years we have developed a monolithic CMOS pixel detector design for the ILC in collaboration with the SARNOFF Corporation. The unique feature of this design is the recorded time tag for each hit, allowing assignment of the hit to a
The TORCH time-of-flight detector will provide particle identification between 2-10 GeV/c momentum over a flight distance of 10 m, and is designed for large-area coverage, up to 30 m^2. A 15 ps time-of-flight resolution per incident particle is antic
In this paper the technological aspects of the FAZIA array will be explored. After a productive commissioning phase, FAZIA blocks started to measure and give very useful data to explore the physics of Fermi energy heavy-ion reactions. This was possib
The Project 8 collaboration aims to measure the absolute neutrino mass scale using cyclotron radiation emission spectroscopy on the beta decay of tritium. The second phase of the project will measure a continuous spectrum of molecular tritium beta de