ﻻ يوجد ملخص باللغة العربية
Upper critical field, H_c2, in quasi-1D superconductors is investigated by the weak coupling renormalization group technique. It is shown that H_c2 greatly exceeds not only the Pauli limit, but also the conventional paramagnetic limit of the Flude-Ferrell-Larkin-Ovchinnikov (FFLO) state. This increase is mainly due to quasi-1D fluctuations effect as triggered by interference between unconventional superconductivity and density-wave instabilities. Our results give a novel viewpoint on the large H_c2 observed in TMTSF-salts in terms of a d-wave FFLO state that is predicted to be verified by the H_c2 measurements under pressure.
The transition temperature Tc of cuprate superconductors falls when the doping p is reduced below a certain optimal value. It is unclear whether this fall is due to strong phase fluctuations or to a decrease in the pairing gap. Different interpretati
We present the first study of codoped iron-arsenide superconductors of the 122 family (Sr/Ba)_(1-x)K_xFe_(2-y)Co_yAs_2 with the purpose to increase the upper critical field H_c2 compared to single doped (Sr/Ba)Fe_2As_2 materials. H_c2 was investigate
Fluctuations around an antiferromagnetic quantum critical point (QCP) are believed to lead to unconventional superconductivity and in some cases to high-temperature superconductivity. However, the exact mechanism by which this occurs remains poorly u
When a second-order magnetic phase transition is tuned to zero temperature by a non-thermal parameter, quantum fluctuations are critically enhanced, often leading to the emergence of unconventional superconductivity. In these `quantum critical superc
Recent high-precision measurements employing different experimental techniques have unveiled an anomalous peak in the doping dependence of the London penetration depth which is accompanied by anomalies in the heat capacity in iron-pnictide supercondu