ترغب بنشر مسار تعليمي؟ اضغط هنا

Weak Interaction Studies with 6He

155   0   0.0 ( 0 )
 نشر من قبل Andreas Knecht
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The 6He nucleus is an ideal candidate to study the weak interaction. To this end we have built a high-intensity source of 6He delivering ~10^10 atoms/s to experiments. Taking full advantage of that available intensity we have performed a high-precision measurement of the 6He half-life that directly probes the axial part of the nuclear Hamiltonian. Currently, we are preparing a measurement of the beta-neutrino angular correlation in 6He beta decay that will allow to search for new physics beyond the Standard Model in the form of tensor currents.



قيم البحث

اقرأ أيضاً

We review the current status of the radioisotopes program at the Soreq Applied Research Accelerator Facility (SARAF), where we utilize an electrostatic-ion-beam trap and a magneto-optical trap for studying the nuclear $beta$-decay from trapped radioa ctive atoms and ions. The differential energy spectra of $beta$s and recoil ions emerging from the decay is sensitive to beyond standard model interactions and is complementary to high energy searches. The completed facility SARAF-II will be one of the worlds most powerful deuteron, proton and fast neutron sources, producing light radioactive isotopes in unprecedented amounts, needed for obtaining enough statistics for a high precision measurement.
111 - J. Marton , M. Bazzi , G. Beer 2015
The strong interaction of antikaons (K-) with nucleons and nuclei in the low energy regime represents an active research field connected intrinsically with few-body physics. There are important open questions like the question of antikaon nuclear bou nd states - the prototype system being K-pp. A unique and rather direct experimental access to the antikaon-nucleon scattering lengths is provided by precision X-ray spectroscopy of transitions in low-lying states of light kaonic atoms like kaonic hydrogen isotopes. In the SIDDHARTA experiment at the electron-positron collider DA?NE of LNF-INFN we measured the most precise values of the strong interaction observables, i.e. the strong interaction on the 1s ground state of the electromagnetically bound K-p atom leading to a hadronic shift and a hadronic broadening of the 1s state. The SIDDHARTA result triggered new theoretical work which achieved major progress in the understanding of the low-energy strong interaction with strangeness. Antikaon-nucleon scattering lengths have been calculated constrained by the SIDDHARTA data on kaonic hydrogen. For the extraction of the isospin-dependent scattering lengths a measurement of the hadronic shift and width of kaonic deuterium is necessary. Therefore, new X-ray studies with the focus on kaonic deuterium are in preparation (SIDDHARTA2). Many improvements in the experimental setup will allow to measure kaonic deuterium which is challenging due to the anticipated low X-ray yield. Especially important are the data on the X-ray yields of kaonic deuterium extracted from a exploratory experiment within SIDDHARTA.
125 - J. Marton , M. Bazzi , G. Beer 2016
The strong interaction of antikaons with nucleons and nuclei in the low-energy regime represents an active research field connected intrinsically with few-body physics. There are important open questions like the question of antikaon nuclear bound st ates. A unique and rather direct experimental access to the antikaon-nucleon scattering lengths is provided by precision X-ray spectroscopy of transitions in low-lying states of light kaonic atoms like kaonic hydrogen isotopes. In the SIDDHARTA experiment at the electron-positron collider DAFNE of LNF-INFN we measured the most precise values of the strong interaction observables, i.e. the strong interaction on the 1s ground state of the electromagnetically bound kaonic hydrogen atom leading to a hadronic shift and a hadronic broadening of the 1s state. The SIDDHARTA result triggered new theoretical work which achieved major progress in the understanding of the low-energy strong interaction with strangeness. Antikaon-nucleon scattering lengths have been calculated constrained by the SIDDHARTA data on kaonic hydrogen. For the extraction of the isospin-dependent scattering lengths a measurement of the hadronic shift and width of kaonic deuterium is necessary. Therefore, new X-ray studies with the focus on kaonic deuterium are in preparation (SIDDHARTA2). Many improvements in the experimental setup will allow to measure kaonic deuterium which is challenging due to the anticipated low X-ray yield. Especially important are the data on the X-ray yields of kaonic deuterium extracted from a exploratory experiment within SIDDHARTA.
Studies of 6He beta decay along with tritium can play an important role in testing ab-initio nuclear wave-function calculations and may allow for fixing low-energy constants in effective field theories. Here, we present an improved determination of t he 6He half-life to a relative precision of 3x10^(-4). Our value of 806.89 pm 0.11(stat)^{+0.23}_{-0.19}(syst) ms resolves a major discrepancy between previous measurements. Calculating the statistical rate function we determined the ft-value to be 803.04 ^{+0.26}_{-0.23} s. The extracted Gamow-Teller matrix element agrees within a few percent with ab-initio calculations.
105 - S. Vaintraub , M. Hass , O. Aviv 2010
Trapped radioactive atoms present exciting opportunities for the study of fundamental interactions and symmetries. For example, detecting beta decay in a trap can probe the minute experimental signal that originates from possible tensor or scalar ter ms in the weak interaction. Such scalar or tensor terms affect, e.g., the angular correlation between a neutrino and an electron in the beta-decay process, thus probing new physics of beyond-the-standard-model nature. In particular, this article focuses on a novel use of an innovative ion trapping device, the Electrostatic Ion Beam Trap (EIBT). Such a trap has not been previously considered for Fundamental Interaction studies and exhibits potentially very significant advantages over other schemes. These advantages include improved injection efficiency of the radionuclide under study, an extended field-free region, ion-beam kinematics for better efficiency and ease-of-operation and the potential for a much larger solid angle for the electron and recoiling atom counters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا